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In 1986, William Thurston introduced the celebrated (asymmetric) Lipschitz distance

on the Teichmüller space of closed or punctured surfaces. We extend his theory to

the Teichmüller space of surfaces with boundary endowed with the arc distance. We

construct a large family of geodesics for the Teichmüller space of a surface with

boundary, generalizing Thurston’s stretch lines. We prove that the Teichmüller space

of a surface with boundary is a geodesic and Finsler metric space with respect to the

arc distance. As a corollary, we find a new class of geodesics in the Teichmüller space

of a closed surface that are not stretch lines in the sense of Thurston.

1 Introduction

In this paper we will study the geometry of the Teichmüller space of an oriented surface

of finite type with non-empty boundary when it is endowed with the arc distance. This

is an asymmetric distance, which generalizes the celebrated Thurston’s asymmetric

distance on the Teichmüller space of a closed surface defined by William P. Thurston.

1.1 Thurston’s theory for closed or punctured surfaces

In [20], Thurston defines two asymmetric distances on the Teichmüller space of a closed

or punctured surface, which naturally mimics the Teichmüller distance in a hyperbolic
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2 D. Alessandrini and V. Disarlo

setting: the distance dTh, which encodes the changes in the length spectrum of simple

closed curves; and the Lipschitz distance dLh, which measures the optimal Lipschitz

constant of a homeomorphism isotopic to the identity (for precise definitions, see

Section 2.4). Following the analogy with the Teichmüller distance, Thurston constructs a

family of paths, called stretch lines, which are geodesics for both distances. Using these

paths, Thurston proves that the two distances always coincide and turn the Teichmüller

space into a geodesic Finsler metric space (see Section 2.5). Understanding the structure

and behavior of all the geodesics for Thurston’s distance is still an open problem.

The geometry of Thurston’s distance of the Teichmüller space of closed or punctured

surfaces was further studied by many authors, including Bonahon [2, 3], Papadopoulos

[12], Théret [19], Walsh [22], Dumas–Lenzhen–Rafi–Tao [6], Lenzhen–Rafi–Tao [9, 10], and

Choi–Rafi [4].

1.2 The theory for surfaces with boundary

In this paper we study similar asymmetric distances on the Teichmüller space Teich(S)

of a surface S with non-empty boundary. The case of surfaces with boundary is

particularly interesting, see, for example, the beautiful applications by Guéritaud–

Kassel [7] on proper affine actions of free groups and Margulis spacetime (notice

that the presence of a non-empty boundary is crucial in their work). In the case of

surfaces with boundary, Thurston’s original formula dTh does not give a distance

anymore (see Parlier [17], Papadopoulos–Théret [14], and Section 2.6). In spite of this,

Liu–Papadopoulos–Su–Théret [11] defined a new distance, the arc distance dA, which

considers the length spectrum of simple closed curves and simple proper arcs orthog-

onal to the boundary (for details, see Section 2.4). A few examples of geodesics for dA

were given by Papadopoulos–Théret [15] and Papadopoulos–Yamada [16]. Alessandrini–

Liu–Papadopoulos–Su [1] studied the close relationship between the arc distance and

Thurston’s compactification.

The arc distance is the main object of study in this paper. Motivated by [1, 15,

16], we will study the property of the metric space (Teich(S), dA). We will prove that it is

a geodesic Finsler metric space. We will construct some special paths, the generalized

stretch lines, which mimic the properties of Thurston’s original stretch lines in this new

setting. Our results will be useful in work in progress by Calderon–Farre to produce

their shear-shape coordinates for Teichmüller space. In their recent preprint [8], Huang–

Papadopoulos study similar questions in the special case of the one-holed torus in the

different setting of Teichmüller spaces with fixed boundary length. All the results in
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Generalized Stretch Lines for Surfaces with Boundary 3

this paper were announced at the Oberwölfach conference “New Trends in Teichmüller

Theory and Mapping Class Groups” in 2018 (see [5]).

1.3 Our results

Let S be an orientable surface of finite type with non-empty boundary. In this paper we

introduce a new asymmetric distance on Teich(S), denoted by dL∂ , which measures the

optimal Lipschitz constant of a continuous map preserving ∂S isotopic to the identity.

We now have three distances on Teich(S), which satisfy the following inequalities (for

precise definitions and statements, see Section 2.4):

dA ≤ dL∂ ≤ dLh .

In analogy with Thurston’s theory, we will construct a large family of geodesics

for the two distances, dA and dL∂ , which we call generalized stretch lines. For any two

points on the same generalized stretch line we will construct an optimal Lipschitz map,

which we call a generalized stretch map. The constructions of generalized stretch lines

and stretch maps are the most important contributions of this paper. This construction

can be summarized in the following statement (the terminology will be introduced later

in Sections 2, 3, and 5).

Theorem 1.1. Let S be a surface with non-empty boundary and fix X ∈ Teich(S).

For every maximal lamination λ on X and for every t ≥ 0 there exists Xt
λ ∈ Teich(S)

and a Lipschitz map �t : X → Xt
λ, called generalized stretch map, with the following

properties:

1. X0
λ = X;

2. Lip (�t) = et;

3. �t(∂X) = ∂Xt
λ;

4. �t stretches the arc length of the leaves of λ by the factor et;

5. for every geometric piece G in X \ λ, the map �t restricts to a generalized

stretch map φt : G → Gt as described in Lemmas 5.5, 5.8;

6. if λ contains a non-empty measurable sublamination, we have

Lip(�t) = min {Lip(ψ) | ψ ∈ Lip0(X, Xt
λ), ψ(∂X) ⊂ ∂Xt

λ},

where Lip0(X, Y) is the set of all Lipschitz maps homotopic to the identity.
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4 D. Alessandrini and V. Disarlo

Fig. 1. The four geometric pieces: the edges ai correspond to segments in ∂X and the edges li
correspond to leaves of λ.

Corollary 1.2. For every X ∈ Teich(S) and every maximal lamination λ on X, if λ

contains a non-empty measurable sublamination then the generalized stretch line

sX,λ : R≥0 −→ Teich(S)

t �→ Xt
λ

is a geodesic path parametrized by arc-length for both dA and dL∂ .

Our construction presents new challenges when compared with Thurston’s

work. In Thurston’s case of closed or punctured surfaces, every maximal lamination

decomposes the surface into ideal triangles. Thurston constructs the stretch map

between two ideal triangles explicitly via the horocyclic foliation. In the case of surfaces

with boundary a maximal lamination decomposes the surface in geometric pieces of

four different types (see Fig. 1). Unlike Thurston [20], we do not construct explicit maps

between the geometric pieces. Instead, we use a trick of its own interest, which allows

to “average” two Lipschitz maps. Our average map will be a Lipschitz map whose

Lipschitz constant is bounded above by the average of the two Lipschitz constants. Our

construction is obtained by adapting a result of Guéritaud–Kassel [7]. Using generalized

stretch lines, we prove the following:
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Generalized Stretch Lines for Surfaces with Boundary 5

Theorem 1.3. The space (Teich(S), dA) is a geodesic metric space. Every two points

X, Y ∈ Teich(S) can be joined by a segment that is geodesic for both dA and dL∂ and is a

finite concatenation of generalized stretch segments.

Corollary 1.4. The arc distance dA is induced by a Finsler metric on Teich(S).

We find that dA and dL∂ coincide, this completes our generalization of

Thurston’s [20, Theorem 8.5].

Corollary 1.5. Given X, Y ∈ Teich(S), there exists a continuous map φ ∈ Lip0(X, Y),

with φ(∂X) ⊂ ∂Y and with optimal Lipschitz constant such that log(Lip(φ)) = dA(X, Y).

In particular, we have

dA(X, Y) = dL∂ (X, Y).

As a byproduct of our constructions, we also find new geodesics for the

Teichmüller space of closed or punctured surfaces endowed with Thurston’s distance.

Indeed, Liu–Papadopoulos–Su–Théret [11] proved that the doubling map

j : (Teich(S), dA) 	 X ↪→ Xd ∈ (Teich(Sd), dTh)

is an isometry. By doubling our generalized stretch lines, we can construct many

new geodesics for (Teich(Sd), dTh) that lie completely in the submanifold of symmetric

hyperbolic structures.

Corollary 1.6. The map (Teich(S), dA) ↪→ (Teich(Sd), dTh) is a geodesic embedding.

Notice that Thurston’s construction of stretch lines in general breaks the

symmetry of hyperbolic structures, see for instance the examples by Théret [19]. Our

construction, instead, provides new geodesics that preserve symmetric hyperbolic

structures.

Corollary 1.7. Let X ∈ Teich(S) and let λ be a maximal lamination of X containing a

measurable sublamination with at least one leaf orthogonal to the boundary of X. Then,
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6 D. Alessandrini and V. Disarlo

the line t �→ (Xt
λ)

d ∈ Teich(Sd) is a geodesic for (Teich(Sd), dTh) that is not a stretch line

in the sense of Thurston [20].

1.4 Sketch of the proof of Theorem 1.1

Let X ∈ Teich(S) and λ be a maximal lamination on X. We want to construct a generalized

stretch line starting from X and directed by λ, that is, for every t ≥ 0 we want to

construct Xt
λ ∈ Teich(S) satisfying the properties of Theorem 1.1.

1.4.1 Geometric pieces

As a 1st step we characterize the connected components of X \ λ, that is, the geometric

pieces. We will see in Proposition 3.2 that there are only four types of pieces (see Fig. 1).

Given a geometric piece
◦
G ⊂ X \ λ we define a suitable generalized stretch

map φt : G → Gt from the original piece G to its “stretched” analogue Gt. The

map has optimal Lipschitz constant Lip(φt) = et. When G is an ideal triangle, we

use the homeomorphism defined by Thurston. In the other cases we use an implicit

construction, which generalizes an argument by Guéritaud–Kassel [7] (see Sections 4

and 5).

1.4.2 Decomposition of X

If λ has no leaves that hit the boundary of X, all the geometric pieces are triangles and

Theorem 1.1 follows by Thurston [20]. We are interested in the case where at least one

leaf of λ is orthogonal to ∂X. We define the boundary block of λ in X in Section 6.1

as the (possibly disconnected) subsurface given by the union of all the non-triangular

geometric pieces (Fig. 14):

B =
⊔

{Gi | Gi is a geometric piece that is not an ideal triangle } ⊆ X .

The boundary block is a complete hyperbolic surface of finite volume, whose boundary

might be non-compact. It is equipped with a finite maximal lamination λB ⊂ λ. The

boundary ∂B will contain a finite union of cycles cj, each determining a crown Cj as

in Fig. 13 (Definitions 6.1 and 6.2, respectively). Denote the union of all such crowns by

C and the complement of C in B by BC := B \ C ⊂ B. Denote by XC := X \ BC ⊂ X the

complement of BC in X, defined in Section 6.1, see Fig. 14. The surface XC is equipped

with a lamination λXC
⊂ λ where no leaf is orthogonal to ∂XC. We have the following
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Generalized Stretch Lines for Surfaces with Boundary 7

commutative diagram, where λ = λB ∪ λXC
:

Every arrow is the canonical inclusion, which is also a Riemannian isometry.

1.4.3 Strategy to define Xt
λ

For t ≥ 0 we construct suitable complete hyperbolic surfaces Bt, Ct, and (XC)t

homeomorphic to B, C, and XC, respectively (see Sections 6.2, 7.4, and 8). The new

surfaces come with preferred Riemannian isometries ιt : Ct ↪→ Bt and ht : Ct ↪→ Xt
C.

We then define Xt
λ as follows:

Xt
λ := Bt

⊔
(XC)t/ ∼ ,

where ιt(z) ∼ ht(z) for every z ∈ Ct. The quotient projection π : Bt ⊔(XC)t → Xt
λ restricts

to Riemannian isometries on (XC)t and Bt (Proposition 8.1):

The generalized stretch map �t : X → Xt
λ is defined by glueing together suitable stretch

maps βt : B → Bt and ψ t from an open dense subset of XC to (XC)t, with the required

properties. The details about the construction of (Bt, βt) are given in Section 6.2. The
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8 D. Alessandrini and V. Disarlo

details about the construction of ((XC)t, ψ t) are given in Sections 8.1 and 7.4. The details

about how to glue the maps βt and ψ t are discussed in Section 8.2.

1.5 Open problems

Our work leads us to conjecture that the three natural distances dA, dL∂ , dLh on Teich(S)

are all equal:

Conjecture 1.8. For every X, Y ∈ Teich(S) we have

dA(X, Y) = dLh(X, Y) .

Notice that our generalized stretch map �t is a homeomorphism if and only if

its restriction to each geometric piece �t|G : G → Gt is also a homeomorphism. Since our

construction of the maps is not explicit, we cannot tell whether they are injective.

1.6 Organization of the paper

This paper is organized as follows. In Section 2, we introduce the main definitions that

we use throughout the paper and we give a more detailed account of the theory of

asymmetric distances on Techmüller spaces. In Section 3, we introduce the notion of

geodesic laminations, maximal, and measured laminations for surfaces with boundary.

In Section 4 we describe an averaging procedure for Lipschitz maps between convex

hyperbolic surfaces. In Section 5, we use it to construct optimal Lipschitz maps between

the geometric pieces. After these preliminary sections, we describe the construction of

our generalized stretch lines. In Sections 6 and 7, we construct some auxiliary surfaces

(the boundary block and the triangulated surface) and we describe how to stretch them.

In Section 8, we glue the stretched boundary block and part of the stretched triangulated

surface together in a suitable way, in order to construct the generalized stretch lines.

This will prove Theorem 1.1. In Section 9, we prove all the other results stated in the

introduction.

2 Background

In this section, we introduce the main definitions that we use throughout the paper and

we give an account of the theory of asymmetric distances on Techmüller spaces.
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Generalized Stretch Lines for Surfaces with Boundary 9

2.1 Hyperbolic surfaces

We start by recalling some basic definitions about hyperbolic surfaces. We denote the

hyperbolic plane by

H2 = {z ∈ C | Im(z) > 0},

endowed with the Riemannian metric

g
H2 = dx2 + dy2

y2 , with z = x + iy.

The hyperbolic half-plane is the subset

{z ∈ C | Re(z) ≥ 0, Im(z) > 0},

where the positive y-axis is its geodesic boundary.

Definition 2.1 (Hyperbolic surface). A hyperbolic surface is a Riemannian manifold

X (possibly with boundary) where every point has a neighborhood isometric to an

open subset of the hyperbolic half-plane. A complete hyperbolic surface is a hyperbolic

surface that is complete as a metric space.

Definition 2.2 (Convex hyperbolic surface). A convex hyperbolic surface is a connected

hyperbolic surface whose universal covering is isometric to a convex subset of the

hyperbolic plane.

Note that the boundary of a complete hyperbolic surface is a union of geodesics

(circles or infinite geodesic lines). Moreover, the connected components of a complete

hyperbolic surface are always convex. Examples of complete hyperbolic surfaces are

ideal polygons in the hyperbolic plane.

Definition 2.3 (Finite hyperbolic surface). A finite hyperbolic surface is a complete

hyperbolic surface with finite volume and compact boundary.

For such finite hyperbolic surfaces, every boundary component is a closed

geodesic, topologically a circle, and every puncture is isometric to a cusp.
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10 D. Alessandrini and V. Disarlo

Definition 2.4 (Local isometry). A local isometry between two hyperbolic surfaces X

and Y is a local diffeomorphism such that the pull-back of the metric on Y is equal to

the metric on X.

Remark 2.5. In this paper, we will need to consider many local isometries that are

1-1 but still are not isometric embeddings in the sense of metric spaces, that is, they do

not preserve the distances between pairs of points. This is because their image is not a

convex subset of the target surface.

2.2 Teichmüller space

In this paper we will denote by S an orientable surface of finite type of genus g, with

b ≥ 0 compact boundary components and p ≥ 0 punctures. The boundary of S will be

denoted by ∂S. We assume the Euler characteristic χ(S) = 2 − 2g − b − p to be negative.

Definition 2.6 (Hyperbolic structure). A hyperbolic structure on S is a pair (X, m),

where X is a finite hyperbolic surface and m : S → X is a homeomorphism, called

the marking.

Definition 2.7 (Teichmüller space). The Teichmüller space Teich(S) is the space of all

hyperbolic structures on S up to isometries that commute with the markings (up to

homotopy). We will denote an element [(X, m)] ∈ Teich(S) by X for short.

The Teichmüller space Teich(S) is diffeomorphic to R6g−6+2p+3b. Let Sd be the

surface obtained doubling S along its boundary, and let σ : Sd → Sd be the associated

involution. A hyperbolic structure on S can be equivalently defined as a hyperbolic

structure on Sd whose isometry group contains σ .

Definition 2.8 (Doubling embedding). If X is a hyperbolic structure on S, its double Xd

is the hyperbolic structure on Sd obtained by doubling X. This gives an embedding

Teich(S) 	 X ↪→ Xd ∈ Teich(Sd).

2.3 Curves and arcs

A simple closed curve in S is trivial if is either null-homotopic or homotopic to a

puncture of S. We will denote by C the set of homotopy classes of non-trivial simple

closed curves on S, and by B the boundary components of ∂S. We recall that for every
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Generalized Stretch Lines for Surfaces with Boundary 11

X ∈ Teich(S) and for every γ ∈ C, there is a unique X-geodesic curve in the homotopy

class γ , which is the shortest curve in γ . We will define the length �X(γ ) to be the length

of this geodesic curve.

A proper arc in S is a continuous map α : [0, 1] → S with {α(0), α(1)} ⊂ ∂S. Our

arcs are unoriented, that is, we will consider α(t) equivalent to α(1 − t) A proper arc is

simple if it is injective. Two proper arcs are properly homotopic if they are connected by

a homotopy where the extremes of the arcs never leave ∂S at any time.

Definition 2.9 (Essential arc). An essential arc is a proper arc that is not properly

homotopic to a proper arc contained in ∂S. We will denote by A the set of proper

homotopy classes of essential simple arcs. Recall that the elements of A are unoriented.

It is well known that for every X ∈ Teich(S) and for every α ∈ A, there is a unique

X-geodesic arc in the proper homotopy class α that is orthogonal to ∂S. This arc is the

shortest in its proper homotopy class; its length is denoted by �X(α).

2.4 Five functionals

The length functions �X(·) of curves and arcs can be used to compare two hyperbolic

structures and, in some cases, define distances on Teichmüller spaces. We will be

interested in the following functionals:

dTh(X, Y) = sup
γ∈B∪C

log
�Y(γ )

�X(γ )
, (1)

dA(X, Y) = sup
δ∈A∪B∪C

log
�Y(δ)

�X(δ)
. (2)

Another natural way to compare two elements X, Y ∈ Teich(S) is to consider

Lipschitz maps between them. Let Lip0(X, Y) be the set of Lipschitz maps between X

and Y that commute with the markings up to homotopy. Denote by Lip(φ) the Lipschitz

constant of a map φ. We will consider the following functionals:

dL(X, Y) = inf{log Lip(φ) | φ ∈ Lip0(X, Y)} ; (3)

dL∂ (X, Y) = inf{log Lip(φ) | φ ∈ Lip0(X, Y), φ(∂X) ⊂ ∂Y} ; (4)

dLh(X, Y) = inf{log Lip(φ) | φ ∈ Lip0(X, Y), φ is a homeomorphism} . (5)
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12 D. Alessandrini and V. Disarlo

It is immediate that the above five functionals satisfy the following inequalities:

dTh(X, Y) ≤ dL(X, Y) ≤ dLh(X, Y)

≤ ≤ =

dA(X, Y) ≤ dL∂ (X, Y) ≤ dLh(X, Y) .

It is not difficult to see that they all satisfy the triangular inequality

d∗(X, Z) ≤ d∗(X, Y) + d∗(Y, Z) ,

and they are not symmetric

∃X, Y : d�(X, Y) �= d�(Y, X) .

A method to produce such X, Y is given in [20, Section 2] and works also for surfaces

with boundary. In the following we will discuss when the axiom of positivity

d�(X, Y) ≥ 0 and d�(X, Y) = 0 ⇔ X = Y

holds, that is, the functionals actually define asymmetric distances. We will see that the

answer depends on whether ∂S is empty or not.

2.5 Closed or punctured surfaces

The case of closed or punctured surfaces was the case originally studied by Thurston

[20]. He introduced the functionals dTh and dLh and proved that they satisfy the

positivity axiom.

One of the main results of [20] is that given X, Y ∈ Teich(S), there exists a

homeomorphism φ ∈ Lip0(X, Y) such that log(Lip(φ)) = dTh(X, Y). This implies

dTh = dL = dLh .

This distance is usually called Thurston’s asymmetric distance, or the Lipschitz

distance. A crucial step in the proof is the construction of a special family of lines in

Teich(S), the stretch lines, which are geodesics for the three distances. Given two points

on the same stretch line, there is an optimal Lipschitz homeomorphism between them,

the so-called stretch map. Using these techniques, given two points X, Y ∈ Teich(S) he

constructed a geodesic segment between X and Y by concatenating a finite number of
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Generalized Stretch Lines for Surfaces with Boundary 13

such stretch lines. This proves that the Teichmüller space with Thurston’s asymmetric

distance is a geodesic metric space. Thurston also studied the infinitesimal behaviour

of his distance. He proved that it agrees with the asymmetric distance associated with

a certain Finsler metric on the Teichmüller space.

2.6 Surfaces with boundary

In the case of surfaces with non-empty boundary, Thurston’s functional dTh does not

satisfy the axiom of positivity. Indeed, Parlier [17] found two points X �= Y ∈ Teich(S)

with dTh(X, Y) ≤ 0. Papadopoulos–Théret [14] found elements X �= Y ∈ Teich(S) with

dTh(X, Y) < 0.

The properties of the functional dTh for surfaces with boundary were studied in

detail by Guéritaud–Kassel [7], who also introduced the functional dL. They proved that

the two functionals are related as follows:

• if dTh(X, Y) ≥ 0, then dTh(X, Y) = dL(X, Y);

• if dTh(X, Y) < 0, then dL(X, Y) < 0.

They give applications to the theory of affine actions on R3 and Margulis space times.

The functional dA was introduced by Liu–Papadopoulos–Théret–Su [11]. They

proved that dA satisfies the axiom of positivity, therefore it defines an asymmetric

distance on Teich(S), which they called the arc distance. They proved the following:

Proposition 2.10 (Liu–Papadopoulos–ThéretSu [11, Corollary 2.8]). The doubling map

(Teich(S), dA) ↪→ (Teich(Sd), dTh) is isometric.

This proposition will be useful for the present work: whenever possible, we

use doubling arguments to reduce our questions to well understood questions about

surfaces without boundary. In any case, we remark that it is not possible to construct

many geodesics for the arc distance using just doubling arguments. Other properties of

the distance dA were studied in [1, 13, 16].

The functional dL∂ is introduced in this paper in order to interpolate between

dA, dLh:

dA(X, Y) ≤ dL∂ (X, Y) ≤ dLh(X, Y) .

Here we prove that dA = dL∂ (Corollary 1.5), that the Teichmüller space with this

distance is a geodesic metric space (Theorem 1.3) and that this distance is induced by a

Finsler metric (Corollary 1.4).
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14 D. Alessandrini and V. Disarlo

3 Geodesic Laminations for Surfaces with Boundary

In this section, we will review the main definitions and results about geodesic

laminations for surfaces with boundary.

3.1 Maximal laminations

Let X ∈ Teich(S). A geodesic lamination on X is a (possibly empty) closed subset λ ⊂ X

that is a union of pairwise disjoint simple X-geodesics, called the leaves of λ, satisfying

the following additional condition: if a leaf of λ intersects the boundary, then the leaf

must be a boundary component, or it intersects the boundary orthogonally.

It is well known that geodesic laminations do not depend on the hyperbolic

structure X, but only on the topological surface S. More precisely, given X, Y ∈ Teich(S),

for every geodesic lamination λ on X, there exists a unique geodesic lamination λ′ on Y

and a homeomorphism f : X → Y consistent with the markings that maps λ to λ′. In

light of this, we will often consider geodesic laminations as topological objects on S,

without specifying the underlying hyperbolic structure.

A sublamination λ′ of a geodesic lamination λ is a closed subset λ′ ⊂ λ that

is itself a geodesic lamination. A maximal lamination is a geodesic lamination that

is maximal with respect to inclusion, that is, it is not a sublamination of a strictly

larger geodesic lamination. When ∂X = ∅, a maximal lamination decomposes X into

finitely many ideal triangles. When ∂X �= ∅, a maximal lamination also decomposes

X into finitely many pieces, in general not always triangles. We will classify them in

Proposition 3.2.

Let λ be a geodesic lamination on X. The double of λ is the lamination λd on Xd

obtained by doubling λ. Note that λd is maximal if and only if λ is maximal and does

not contain leaves orthogonal to ∂X.

Definition 3.1 (Geometric piece). A geometric piece is a polygon in H2 as in Fig. 1:

• an ideal triangle, called triangular piece;

• a right-angled quadrilateral with two consecutive ideal vertices, called

quadrilateral piece;

• a right-angled pentagon with one ideal vertex, called pentagonal piece;

• a right-angled hexagon, called hexagonal piece.

Proposition 3.2. If λ is a maximal lamination on X, then X \ λ has 2|χ(S)| = 4g − 4 +
2p + 2b connected components. Each connected component is locally isometric to the
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Generalized Stretch Lines for Surfaces with Boundary 15

interior of a geometric piece, where the edges labeled ai correspond to segments in ∂X

and edges labeled li correspond to leaves of λ (see Fig. 1).

Proof. Let C be a connected component of X\λ. Note that C contains no essential simple

closed curve; otherwise, we could extend λ further by adding such a curve. Hence, there

are three possibilities for the topology of C: a pair of pants, a cylinder, or a disk. If C

were a cylinder or a pair of pants, it would have 2 or 3 ends, but this is impossible: every

end of C contains a spike, or a segment of ∂X, or a simple closed curve in X coming from

a leaf of λ or an entire boundary component in ∂X. If there is more than one end, we

could add one more leaf to λ joining two of them.

We conclude that C is topologically a disk, that is, it is isometric to a hyperbolic

polygon whose boundary contains segments in ∂X or leaves of λ and whose vertices are

right angled or ideal. Denote by s the number of its ideal vertices and by n the number of

segments in ∂X. Given two spikes, a spike and a segment, or two segments, we can join

them with a geodesic perpendicular to ∂X that, by maximality, must lie in the boundary

of C. Hence, s + n ≤ 3, and it must be s + n = 3. Now we can see that the possibilities are

s = 3, n = 0 (ideal triangle), s = 2, n = 1 (quadrilateral), s = 1, n = 2 (pentagon), s = 0,

and n = 3 (right-angled hexagon) as in Fig. 1.

Now we count the number of connected components in X \ λ. Since each one has

area π and the surface has area 2π |χ(S)|, we find 2|χ(S)| connected components. �

Proposition 3.3. Every lamination λ can be extended to a maximal lamination by

adding finitely many leaves.

Proof. If λ is not maximal then X \ λ is a finite union of finite-area connected

subsurfaces with boundary. Up to extending λ with finitely many simple closed curves,

we can assume that each connected component is either a disk, a cylinder or a pair

of pants. Since the area of each piece is π , each of its boundary component is a finite

polygonal with ideal or right-angled vertices. It can thus be further subdivided with at

most finitely many simple essential arcs. �

3.2 Transverse measures

Let λ be a geodesic lamination on X and k be an arc transverse to λ. A transverse isotopy

of k is an isotopy that preserves the transversality of k and such that the endpoints of k

either remain in the complement of λ or remain in the same respective leaves during the
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16 D. Alessandrini and V. Disarlo

entire isotopy. A transverse measure on λ is a function μ that associates to every arc in

X transverse to λ a measure μk on k satisfying the following conditions:

• μ is invariant under transverse isotopies of arcs;

• if k ⊂ k′ then μk = μk′ |k;

• supp(μk) = k ∩ λ.

A geodesic lamination is compactly supported if it is contained in a compact

subset of X. A geodesic lamination is measurable if it is compactly supported and it

admits a transverse measure. If two sublaminations of a geodesic lamination are both

measurable then their union is also measurable. The largest measurable sublamination

of a geodesic lamination is called its stump. The stump can possibly be empty.

3.3 Measured laminations

A measured lamination is a pair given by a compactly supported geodesic lamination

and a transverse measure on it. The space of measured laminations on S is denoted

by ML(S). It is a topological space homeomorphic to R6g−6+2p+3b by [1, Proposition

3.9]. Two measured laminations are projectively equivalent if their underlying geodesic

laminations coincide and their transverse measures differ by multiplication by a posi-

tive real number. A projectivized measured lamination is a projective equivalence class

of non-trivial measured laminations. The space of projectivized measured laminations

on S will be denoted by PML(S). It is homeomorphic to a sphere S6g−7+2p+3b by [1,

Proposition 3.9]. The simplest examples of measured laminations are given by the

elements of A∪B ∪ C. Each becomes a measured lamination once it is endowed with the

counting measure, that is, the measure that counts the number of intersection points

with a transverse arc.

The length function � from Section 2.3 continuously extends to ML(S) (see [1]):

� : Teich(S) × ML(S) 	 (X, μ) −→ �X(μ) ∈ R+ .

The arc distance dA in (2) can be also computed as follows.

Theorem 3.4 ([1, Proposition 3.3]). The following holds:

dA(X, Y) = max
μ∈ML(S)\{∅}

log
�Y(μ)

�X(μ)
= max

[μ]∈PML(S)
log

�Y(μ)

�X(μ)
. (6)
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Generalized Stretch Lines for Surfaces with Boundary 17

Note that the supremum over A∪B∪C in (2) is now replaced by a maximum over

PML(S) in (6). The measured laminations where the maximum is achieved are called

ratio-maximizing measured laminations (see Section 9.2).

3.4 Generalities about Bonahon-Thurston’s cocycles and cataclysms

In this section, we will recall some basics facts about the shearing cocycles of a

hyperbolic structure, following Bonahon [2, 3]. This tool will be essential for us later, in

Section 7.4.

In [2], Bonahon works for most of the paper under the hypothesis that the surface

is closed. At the end, in Section 12.2 and 12.3, he explains how to extend his results to

the case of a finite hyperbolic surface. Notice that in Bonahon’s setting, laminations

are not allowed to hit the boundary orthogonally, as we allow here. Hence, a maximal

lamination decompose the surface into triangles.

For the rest of this section, we fix a maximal lamination λ on S that does not hit

the boundary of S orthogonally. A transverse cocycle for λ can be thought of as a finitely

additive signed measure for λ.

Definition 3.5 (Transverse cocycle). A transverse cocycle for λ is a map associating a

number α(k) ∈ R to each unoriented arc k transverse to λ such that α is additive, and α is

λ-invariant (see [3] for more details). A transverse cocycle α satisfies the cusp condition

if every simple closed curve transverse to λ and going once around a puncture of S has

zero total measure for α. We denote by H0(λ;R) the set of all transverse cocycles for λ

satisfying the cusp condition.

We will represent transverse cocycles using train tracks, see Bonahon

[3, Section 3] for the definition. Following [3], a train track τ snugly carries a geodesic

lamination λ if τ carries λ, if λ meets every tie of τ , and if there is no curve carried by

τ which is disjoint from λ and which joins an endpoint of a spike of S \ τ to another

one. Every train track which carries λ can be transformed into one that snugly carries λ

after a finite sequence of splittings.

Definition 3.6 (Switch condition). Let τ be a train track, with set of edges Eτ . A function

α : Eτ → R is said to satisfy the switch relations if the following condition holds: for

every switch v of τ , if e1, . . . , em are the edges arriving on one side of v and f1, . . . , fn are
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18 D. Alessandrini and V. Disarlo

the edges arriving on the other side, then

m∑
i=1

α(ei) =
n∑

j=1

α(fi).

A function α : Eτ → R is said to satisfy the cusp condition if for every puncture of S, the

sum of the α-values of the edges of τ going into the puncture is zero.

Combining Theorem 11 and Theorem 17 in Bonahon’s paper [3], we have the

following:

Theorem 3.7 (Bonahon [3]). Let τ be a train track that snugly carries λ. There is a one-

to-one correspondence between the set of all transverse cocycles for λ satisfying the

cusp condition and the set of all the functions α : Eτ → R which satisfy the switch

relations and the cusp condition. In particular, the set H0(λ;R) is a finite dimensional

vector space.

Every X ∈ Teich(S) induces a special transverse cocycle for λ, the shearing

cocycle.

Proposition 3.8 (Bonahon [2]). Every X ∈ Teich(S) determines a unique transverse

cocycle ρX ∈ H0(λ;R), called the shearing cocycle of X.

The previous proposition gives a natural map Teich(S) → H0(λ;R) defined as

follows:

Teich(S) 	 X �→ ρX ∈ H0(λ;R) .

To understand this map, Bonahon uses Thurston’s symplectic form ω on the vector

space H0(λ,R). When λ is carried by a generic train track, that is, a train track where

each switch is adjacent to exactly 3 edges, ω can be expressed by a simple formula.

For generic train tracks, the three edges adjacent to the same switch play different

roles: there is one edge on one side of the switch, called the incoming edge, and two

edges on the other side, called outgoing edges. The two outgoing edges are called

the left and the right outgoing edge, as seen from the incoming edge according to the

orientation of S.
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Generalized Stretch Lines for Surfaces with Boundary 19

Lemma 3.9 ([18, §3.2], [2, Section 3]). If the train track is generic, ω can be expressed

as

ω(α, β) =
∑

v

[α(er
v)β(el

v) − α(el
v)β(er

v)] ,

were the sum is taken over all the switches v of τ , el
v, er

v are the left and right outgoing

edges from v, and α(e), β(e) are the weights associated to the edge e.

Theorem 3.10 (Bonahon [2]). A transverse cocycle α ∈ H0(λ;R) is the shearing cocycle

for a hyperbolic structure on S if and only if ω(α, β) > 0 for every compactly supported

transverse measure β for λ. In particular, the map X �→ ρX defines a real analytic

homeomorphism from Teich(�) to an open convex cone bounded by finitely many faces

in H0(λ;R).

Thurston’s stretch lines can be easily described using this theory:

Proposition 3.11 (Bonahon [2]). For an X ∈ Teich(S), denote by Xt
Th ∈ Teich(S)

Thurston’s stretch line starting from X and directed by λ. Then,

ρXt
Th

= et · ρX .

4 Average of Lipschitz Maps

In this section, we will deal with Lipschitz maps between convex hyperbolic surfaces.

We introduce here a new technique that combines any two such maps into a new map

whose Lipschitz constant is at most the average of their constants, generalizing a result

by Guéritaud–Kassel [7]. We will employ this construction in Section 5.

4.1 The Guéritaud–Kassel construction for convex subsets of H2

Given two metric spaces (�, d) and (�′, d′), a map φ : � → �′ is called (K-)Lipschitz if

there exists a real number K ≥ 0 such that

d′(φ(x1), φ(x2)) ≤ Kd(x1, x2)

for all x1, x2 ∈ �. The Lipschitz constant Lip(φ) is the smallest of such K’s.

The following criterion allows to recover the Lipschitz constant from local

information.
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20 D. Alessandrini and V. Disarlo

Lemma 4.1 (Guéritaud–Kassel [7, Lemma 2.9]). Let � be a convex subset of H2 or

a convex hyperbolic surface. Let (�′, d′) be a metric space. If φ : � → (�′, d′) is a

continuous function then we have the following:

Lip(φ) = supx∈�infr>0Lip(φ|B(x;r)).

We will be interested in a generalization of the following map.

Definition 4.2 (Guéritaud–Kassel [7, Section 2.3]). Let �, �′ ⊆ H2 be convex subsets.

Let φ, ψ : � → �′ be continuous maps. The average of φ and ψ is the map ϒ : � → �′

such that for every x ∈ �, ϒ(x) is the midpoint of the geodesic joining φ(x) and ψ(x).

Lemma 4.3 (Guéritaud–Kassel [7, Lemma 2.13]). Let �, �′ ⊂ H2 be convex subsets, and

φ, ψ : � → �′ be Lipschitz maps. Then their average ϒ : � → �′ is a Lipschitz map and

Lip(ϒ) ≤ Lip(φ) + Lip(ψ)

2
.

4.2 Generalizing Guéritaud–Kassel’s construction to convex hyperbolic surfaces

Assume that X, Y are two convex hyperbolic surfaces (not necessarily homeomorphic)

and let φ, ψ : X → Y be two continuous maps in the same homotopy class. We will now

define a new continuous map ϒx0,γ (φ, ψ) : X → Y called the average of φ and ψ . This

map generalizes the previous construction of Guéritaud–Kassel to hyperbolic surfaces.

Our construction will depend on the choice of a base point x0 ∈ X and a geodesic path

γ : [0, 1] → Y joining φ(x0) and ψ(x0).

Step 1: Construct two suitable lifts of φ and ψ

Let p : X̃ → X and q : Ỹ → Y be the universal coverings of X and Y. Recall that X̃, Ỹ ⊂ H2

are convex. Choose points x̃0 ∈ p−1(x0) and ỹ0 ∈ q−1(φ(x0)). There exists a unique lift

φ̃ : X̃ → Ỹ of φ such that φ̃(x̃0) = ỹ0. Similarly, there exists a unique lift γ̃ : [0, 1] → Ỹ

such γ̃ (0) = ỹ0 (see the diagram below).
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Generalized Stretch Lines for Surfaces with Boundary 21

Denote by z̃0 = γ̃ (1). By construction z̃0 ∈ q−1(ψ(x0)). There exists a unique

lift ψ̃ : X̃ → Ỹ of ψ such that ψ̃(x̃0) = z̃0. The construction above give us two maps

φ̃, ψ̃ : X̃ → Ỹ, between convex subsets of H2.

Step 2: Define ϒ : � → �′

We can now define the map

ϒ̃ : X̃ → Ỹ

that maps every x ∈ X̃ to the midpoint of the geodesic segment joining φ̃(x) and ψ̃(x)

as in Definition 4.2. The lemma below follows easily from elementary arguments on

coverings and their automorphisms.

Lemma 4.4. The map ϒ̃ : X̃ → Ỹ commutes with p and q.

Definition 4.5. The (x0, γ )-average between φ and ψ is the map ϒ : X → Y induced by

ϒ̃ : X̃ → Ỹ and defined as follows:

ϒ(x) := q(ϒ̃ (̃x)),

where x̃ is any element in p−1(x). We will also use the notation

ϒx0,γ (φ, ψ) := ϒ .

Using the basic properties of coverings, it is easy to verify that the map ϒ does not

depend on ỹ0 ∈ q−1(φ(x0)) and x̃0 ∈ q−1(x0).

Theorem 4.6. Let X, Y be two (possibly non-homeomorphic) convex hyperbolic

surfaces. Let φ, ψ : X → Y be two homotopic Lipschitz maps. Then for every x0 ∈ X and

for every γ : [0, 1] → Y with γ (0) = φ(x0) and γ (1) = ψ(x0), the map ϒx0,γ (φ, ψ) : X → Y
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22 D. Alessandrini and V. Disarlo

is Lipschitz with

Lip(ϒx0,γ (φ, ψ)) ≤ Lip(φ) + Lip(ψ)

2
.

Proof. We lift the maps φ and ψ to the universal coverings as in Step 1 above. The

Lipschitz constant of ϒ̃ is bounded by Lemma 4.3. This gives a bound on the Lipschitz

constant of ϒ by Lemma 4.1. �

5 Generalized Stretch Maps Between Geometric Pieces

We will construct optimal Lipschitz maps between geometric pieces of the same type.

Definition 5.1. Let G and G′ be two geometric pieces of the same type. A continuous

map φ : G → G′ is label preserving if it maps every edge of G to an edge of G′ with the

same label. Recall that the labels are assigned as in Fig. 1.

5.1 Centers and shears

Only triangular and quadrilateral pieces have bi-infinite edges. There is a one-

parameter family of ways to glue two of them together along a bi-infinite edge. We

will parametrize the glueing using the shear parameter, that is, the (signed) distance

between their centers. We recall these key-definitions below.

Definition 5.2 (Center of li with respect to T ). Let li be a bi-infinite edge in a triangular

piece T . The center of li with respect to T is the intersection point Oi
T between li and

the geodesic perpendicular to li through the opposite vertex.

Note that each triangular piece has three centers: O1
T , O2

T , O3
T .

Definition 5.3 (Center of l with respect to Q). Let l be the (unique) bi-infinite edge in

a quadrilateral piece Q. The center of l with respect to Q is the intersection point OQ
between l and the unique (geodesic) perpendicular to l and to the opposite edge.

We are now in the position to define the following.

Definition 5.4 (Shear between G and G′). Let G and G′ be two geometric pieces glued

along the bi-infinite edge e, as in Fig. 2. We define the shear parameter between G and G′

as the signed distance sheare(G,G′) ∈ R between the centers OG of e with respect to G and
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Generalized Stretch Lines for Surfaces with Boundary 23

Fig. 2. Shear(Q,T ) > 0.

the center OG′ of e with respect to G′. The sign is given by the orientation of the surface,

which we always assume to be counter-clockwise: the sign is positive if OG comes before

OG′ with respect to the orientation that ∂G induces on e. (Notice that flipping the roles

of G and G′ in this construction does not change the sign of sheare(G,G′).)

5.2 Thurston’s stretch homeomorphism between triangular pieces

Thurston [20] explicitly describes a family of Lipschitz homeomorphisms between ideal

triangles.

Lemma 5.5 (Thurston [20, Proposition 2.2]). Let t ≥ 0 and T , T t be two triangular

pieces. There exists a label-preserving map φt : T → T t with the following properties:

1. φ is a homeomorphism;

2. φt(OT ) = OT t and its restriction φt| : li → lti multiplies the arc length by et for

each i = 1, 2, 3;

3. Lip(φt) = et.

We denote the target of the map φt by T t for consistency with the next sections

(T t is actually isometric to T ). In order to define his map φt, Thurston defined the

horocyclic foliation a partial foliation K of T defined as follows (see Fig. 3). Consider the

vertex of T adjacent to the edges l1 and l2. A horocycle h centered at this vertex intersects

the edges l1, l2 at the points h1, h2, so that d(h1, O1
T ) = d(h2, O2

T ). We consider a partial

foliation K12 whose leaves are all the horocycles whose points h1, h2 are closer to the

vertex than the corresponding center O1
T or O2

T . We denote by hd
12 the only horocycle h
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24 D. Alessandrini and V. Disarlo

Fig. 3. Horocyclic foliation.

in K12 such that d(h1, O1
T ) = d. Similarly, we define partial foliations K23,K31 starting

with the other two vertices.

Definition 5.6 (Horocyclic foliation). The horocyclic foliation K is the union of the

three partial foliations K12, K23 and K31. (The triangle bounded by the three horocycles

h0
12, h0

23 and h0
31 is unfoliated.)

Lemma 5.7 (Thurston [20, Proposition 2.2]). The map φt maps the leaf hd
ij of K in T to

the leaf hetd
ij of K in T t affinely. On the unfoliated region, φt is the identity.

In the rest of this section, we will prove results analog to Lemmas 5.5 and 5.7

for the geometric pieces of the other kinds.

5.3 Parameters for the geometric pieces

While there is just one ideal triangle up to isometry, the geometric pieces of the other

kinds have parameters. A quadrilateral piece Q is uniquely determined by the length

of the edge a1, a pentagonal piece P by the lengths of the edges a1, a2, an hexagonal

piece H by the lengths of three alternating edges, see Fig. 1. But these parametrizations

are not very convenient for our needs. We will now introduce other parameters for the

geometric pieces.

Doubling a quadrilateral piece Q along a1, we get an ideal quadrilateral Qd, as

in Fig. 4. Consider on a1 the orientation induced by H2, and triangulate Qd adding a

diagonal e accordingly. Let T , T ′ be the triangles obtained. Their shear s parametrizes

Q completely. Notice that a1 takes values in (0, ∞), while s takes values in (−∞, ∞). As

s → +∞ we have a1 → +∞, but as s → −∞ we have a1 → 0.
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Generalized Stretch Lines for Surfaces with Boundary 25

Fig. 4. The quadrilateral Qd
s .

Fig. 5. Doubling the pentagon to get Pd.

Similarly, doubling a pentagonal piece P along the edges a1 and a2, we get a

hyperbolic cylinder Pd with two spikes and a totally geodesic boundary. We will denote

it by ld1 . After choosing an orientation on ld1 , we consider two geodesics e1, e2 coming

from each of the two spikes and spiraling around the geodesic ld1 according to the chosen

orientation. The geodesics e1, e2 decompose Pd in two ideal triangles T , T ′, as in Fig. 5.

Their shears coordinates s1 and s2 parametrize Pd and hence P: we will use them as

parameters. The shear coordinates depend on the choice of orientation of the geodesic ld1 .

Indeed, by choosing the other orientation, we would have the mirror image of the same

picture: the two shear coordinates would have the same absolute values but opposite

signs. To fix the signs of the coordinates, we will always choose the orientation of ld1
so that s1 + s2 > 0. Note that this sum can never be zero as |s1 + s2| = �(ld1 ) by

[21, Proposition 3.4.21].

Again, doubling a hexagonal piece H along the edges a1, a2, a3, we get a pair of

pants Hd with 3 geodesic boundary components that we will denote by ld1 , ld2 , ld3 . We can

find three disjoint infinite simple geodesics e1, e2, e3 in Hd such that ei spirals around

ldi+1 and ldi+2, for i ∈ {1, 2, 3} and sums of indices taken modulo 3. The geodesics e1, e2, e3

cut the pair of pants in two triangles T , T ′, glued with shear coordinates s1, s2, s3. Up to

changing the directions of the spirals, we can always choose the geodesics ei such that

si + si+1 = �(ldi+2) (see [21, Proposition 3.4.21]). Thus, at least two of the si’s are positive:
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26 D. Alessandrini and V. Disarlo

assume s2, s3 > 0. We will parametrize the hexagons using the three shear coordinates

s = (s1, s2, s3).

In the three cases, the lengths of the edges ai can be computed explicitly from

the shears, but we will not need these formulae here.

5.4 Stretching the geometric pieces

In the rest of the paper, we will denote by Q := Qs, P := Ps with s = (s1, s2), H := Hs with

s = (s1, s2, s3) a geometric piece having certain prescribed shear coordinates. Moreover,

we will use the notation Qt := Qets, Pt := Pets, Ht := Hets.

Lemma 5.8 (Stretch of geometric pieces). Fix t ≥ 0. Let Fs = Qs,Ps or Hs be a marked

geometric piece. Then there exists a label-preserving map φt : Fs → Fets such that

1. φt is onto;

2. the map φt| : li → lti is affine and multiplies the arc length by et for every

i = 1, 2, 3;

3. Lip(φt) = et.

4. If the piece is a quadrilateral, φt(OQ) = OQt ;

Proof. We double Fs and Fset obtaining Fd
s and Fd

ets, as we did in Section 5.3. Let

σ : Fd
s → Fd

s be the isometric involution that maps one copy of Fs in Fd
s to the other

copy. Similarly, let σ t : Fd
set → Fd

set be the corresponding isometric involution on Fd
set .

Let T and T ′ be the two ideal triangles in Fd
s constructed in Section 5.3, separated by

edges ei (where i = 1 for Fs = Qs, i ∈ {1, 2} for Fs = Ps, i ∈ {1, 2, 3} for Fs = Ps.) Let Tt and

T ′
t be the corresponding triangles in Fd

set .

Let ψt : T → Tt and ψ ′
t : T ′ → T ′

t be the two homeomorphisms as in Lemma 5.5.

The maps ψt and ψ ′
t agree on the edges ei, since shearei

(Tt, T ′
t ) = et ·shearei

(T , T ′). Hence,

the maps ψt and ψ ′
t glue to a homeomorphism �t : Fd

s → Fd
set . By construction, �t maps

every edge li of Fd
s to the corresponding edge of Fd

set multiplying its arc length by et.

By Lemma 4.1 we have

Lip(�t) = max{Lip(ψt), Lip(ψ ′
t)} = et.

Similarly, σt ◦ �t ◦ σ : Fd
s → Fd

set is a et-Lipschitz homeomorphism that maps

every edge li of Fd
s to the corresponding edge of Fd

set multiplying its arc length by et.
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Generalized Stretch Lines for Surfaces with Boundary 27

Choose x0 ∈ a1 ⊂ Fs. By construction we have σ(x0) = x0 and �σ
t (x0) = σt◦�t(x0).

Let γ be a geodesic segment crossing a1 once and joining �t(x0) and �σ
t (x0). Thus, γ is

orthogonal to a1 and σt(γ ) = γ . We consider the map ϒ t := ϒx0,γ (�t, �σ
t ) : Fd

s → Fd
ets,

that is, the average of �t and �σ
t with respect to x0 and γ , in the sense of Theorem 4.6.

By construction and Theorem 4.6, ϒ t enjoys the following properties:

• ϒ t is onto;

• ϒ t maps every edge li of Fd
s to the corresponding one of Fset by multiplying

its arc length by et;

• Lip(ϒ t) = et.

• If Fs = Qs, ϒ t maps the center of l2 in Qd
s to the center of l2 in Qd

set ;

Moreover, by construction we have

σt ◦ ϒ t ◦ σ = ϒσ(x0),σ(γ )(σt ◦ � ◦ σ , σt ◦ �σ ◦ σ) = ϒx0,γ (�σ , �) = ϒx0,γ (�, �σ ) = ϒ t.

Hence, the image by ϒ t of the edges ai of Fs are the corresponding edges of Fets, and ϒ t

restricts to φt = ϒ|Fs
: Fs → Fets as in the statement. �

It is interesting to compare our construction of the stretch map for the case of

the hexagon with the one given by Papadopoulos–Yamada [16], who construct optimal

Lipschitz maps between special types of hexagons. Their work generalize an explicit

example by Papadopoulos–Théret [15] for hexagons with l1 = l2 = l3. The Lipschitz

constant of the Papadopoulos–Yamada map is usually achieved only on one of the three

alternating edges, but not on all of them. Because of this, their map is not suitable for

our purposes.

5.5 Understanding the shear parameters

We will now give a geometric interpretation to the shear parameters s of the geometric

pieces. Our aim is to prove Propositions 5.10, 5.12, and 5.14.

Consider Qs := ABCD ∈ H2 where D, C are the two ideal vertices, as in Fig. 6. Let

F be the horocyclic foliation based in C, with f ∈ F its (unique) leaf through OQ. Denote

by PAD the intersection point between f and the bi-infinite geodesic of H2 obtained

extending BC. Similarly, let F ′ be the horocyclic foliation based in D, with f ′ ∈ F ′

its (unique) leaf passing through OQ. Denote by PBC the intersection point between f ′
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28 D. Alessandrini and V. Disarlo

Fig. 6. Lemma 5.9.

and the bi-infinite geodesic of H2 obtained extending AD. We will compute the “signed”

distances between PBC, PAB and B, A, respectively. We define

1. d±(PBC, B) := ε · d(PBC, B), where ε = 1 when PBC ∈ BC and ε = −1 when

PBC �∈ BC;

2. d±(PAD, A) := ε · d(PAD, A), where ε = 1 when PAD ∈ AD and ε = −1 when

PAD �∈ AD.

By construction, it is clear that d±(PBC, B) = d±(PAD, A).

Lemma 5.9. In the notation above, we have

d±(PBC, B) = d±(PAD, A) = s

2
.

Proof. We will compute these lengths explicitly. We will denote by Cu, Du the vertices

of Qd
s which are the reflection of C, D. The ideal quadrilateral Qd

s can be drawn in the

upper half plane model of H2, with vertices Du = −1, Cu = 0, C = es, D = ∞, see Fig. 7.

With this choice, the two ideal triangles T = CuCD and T ′ = DuCuD are glued with shear

coordinate equal to s.

We will first compute the coordinates of the center OQ ∈ CD. We denote by

Ou
Q ∈ CuDu the reflection of OQ. The geodesic segment OQOu

Q is the common perpen-

dicular of the geodesics CD and CuDu. In the language of Euclidean geometry, OQOu
Q is

an arc of a Euclidean circle centered at C and perpendicular to CuDu. By a computation,

the Euclidean radius of this circle is
√

es(1 + es). This number is also the y-coordinate

of the points OQ and PAD (see Fig. 7).

We will now compute the coordinates of the point A in a similar way. The

geodesic segment AB is the common perpendicular of the geodesics CCu and DDu. In the

language of Euclidean geometry, AB is an arc of a Euclidean circle centered at Du and
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Generalized Stretch Lines for Surfaces with Boundary 29

Fig. 7. The quadrilateral Qd in the upper half plane model.

perpendicular to CCu. By a computation, the Euclidean radius of this circle is
√

1 + es.

This is also the y-coordinate of A.

The number d±(PAD, A) is the log of the ratio of the y-coordinates of PAD and A:

d±(PAD, A) = log

√
es(1 + es)√

1 + es
= s

2
.

�

The following result is an immediate consequence of Lemmas 5.8 and 5.9

Proposition 5.10. Let t ≥ 0, and let φt : Q → Qt be the generalized stretch map as in

Lemma 5.8. Then, if s ≥ 0, the map φt sends the points PBC and PAD of Q to the points

PBC and PAD, respectively, of Qt.

Let s = (s1, s2) with s1 + s2 > 0. Up to changing the order of s1 and s2, we

can assume that s2 > s1, which in particular gives s2 > 0. Consider the pentagon

Ps := ABCDE ∈ H2 where D is the ideal vertex, as in Fig. 8. The axes of the segments

AE and BC intersect in a point H, which can be inside P, outside P or on the side

EA, see Fig. 8. We will see in Lemma 5.11 that this depends on the sign of s1. Notice

that the point H lies on the bisector of the ideal angle at the vertex D. Let MAE , MBC

be the midpoints of AE, BC, respectively, and HAB, HDC, HDE the projections of H on

the geodesics containing AB, DC, DE, respectively. Denote F be the horocyclic foliation

based in D. By construction there is one unique leaf f ∈ F passing through HDE

and HDC.
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30 D. Alessandrini and V. Disarlo

Fig. 8. Lemma 5.11.

We compute the signed distances between E and HDE , and B and HAB. We define

1. d±(HDE , E) := ε · d(HDE , E), where ε = 1 when HDE ∈ ED and ε = −1 when

HDE �∈ ED;

2. d±(HDC, C) := ε · d(HDC, C), where ε = 1 when HDC ∈ DC and ε = −1 when

HDC �∈ DC;

3. d±(HAB, A) := ε · d(HAB, A), where ε = 1 when HAB ∈ AB and ε = −1 when

HAB �∈ AB;

4. d±(HAB, B) := ε · d(HAB, B), where ε = 1 when HAB ∈ AB and ε = −1 when

HAB �∈ AB.

By construction, it follows d±(HDE , E) = d±(HAB, A) and d±(HDC, C) = d±(HAB, B).

Lemma 5.11. In the notation above, we have

d±(HDE , E) = d±(HAB, A) = s1

2

d±(HDC, C) = d±(HAB, B) = s2

2
.

Proof. We will compute these lengths explicitly. Denote by Du the spike of Pd
s which

is the reflection of D. The universal covering of Pd
s can be drawn in the upper half plane

model of H2. We will denote by D̃ a lift of D, by D̃u+ the lift of Du at its left and by D̃u−
the lift of Du at its right, see Fig. 9. We remark that the left part of Fig. 9 is drawn in

the disc model for an easier visualization, but all the computations are performed in

the upper half plane model. Denote by Ã, B̃, C̃, Ẽ the lifts of A, B, C, E, which form a copy

of the pentagon with the vertex D̃. Denote by Z and W the endpoints of the lift of the

geodesic ld1 .
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Generalized Stretch Lines for Surfaces with Boundary 31

Fig. 9. The universal covering of Pd.

We can assume Z = 0, D̃u+ = −1, D̃ = ∞. Using the two triangles T and T ′,
glued with shears s1, s2, we find D̃u− = es1 . Similarly, using the ideal triangulation whose

triangles spiral around ld1 in the opposite direction, glued with shears −s1, −s2, we find

W = es1+s2 − 1

es2 + 1
.

We will now compute the coordinates of the points Ã and Ẽ. The geodesic

containing them is perpendicular to the lift of ld1 , hence it lies on an Euclidean circle

centered at D̃u+. By an elementary computation its Euclidean radius is r =
√

es2 (es1+1)
es2+1 .

Hence, the point Ẽ is the complex number −1 + ri. The point Ã can be found as the

intersection of two circles:

Ã = es1+s2 − 1

es1+s2 + 2es2 + 1
(1 + ir).

We now compute the intersection between the axis of the geodesic containing Ã

and Ẽ and the bisector of the ideal angle at D̃. The bisector is the vertical line with real

part equal to es1−1
2 :

{
es1 − 1

2
+ it | t > 0

}
.
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32 D. Alessandrini and V. Disarlo

To compute its intersection with the axis, we will apply the Möbius transformation:

M : z → −z − 1 − r

z + 1 − r
.

The transformation acts in the following way:

M
(
Ẽ
) = i, M

(
Ã
) = i

1 + 2r + es2(2 + es1 + 2r)

es1+s2 − 1
.

The axis of the segment between M
(
Ẽ
)

and M
(
Ã
)

is given by the equation

{
z ∈ C | Im(z) > 0 and zz̄ = 1 + 2r + es2(2 + es1 + 2r)

es1+s2 − 1

}
.

The imaginary part of the intersection between the bisector and the axis is given

by the equation:

M
(

es1 − 1

2
+ it

)
M

(
es1 − 1

2
+ it

)
= 1 + 2r + es2(2 + es1 + 2r)

es1+s2 − 1
,

with solution

t = 1

2

√
(es1 + 1)(3es1+s2 − es1 − es2 − 1)

(es2 + 1)
.

This number is the imaginary part of the point H̃, whose real part is es1−1
2 .

The point HDE lies on the perpendicular line from H̃ to the segment from Ã to Ẽ.

This line lies on a Euclidean circle centered at D̃u+, hence the imaginary part of HDE is

equal to the radius of this circle, which is the absolute value of H̃ + 1, namely

√
es1+s2(es1 + 1)

es2 + 1
.

The number d±(HDE , E) is the log of the ratio of the imaginary parts of H̃DE and Ẽ:

d±(HDE , E) = log

√
es1+s2 (es1+1)

es2+1√
es2 (es1+1)

es2+1

= s1

2
.

For d±(HDC, C), notice that d±(HDE , E) + d±(HDC, C) = l1 = 1
2 (s1 + s2). �
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Fig. 10. Lemma 5.13.

The following result is an immediate consequence of Lemmas 5.8 and 5.11.

Proposition 5.12. Let t ≥ 0, and let φt : P → Pt be the generalized stretch map as in

Lemma 5.8. Then, the map φt sends the point HDC of P to the point HDC of Pt. Moreover,

if s1 ≥ 0, φt sends the points HDE and HAB of P to the points HDE and HAB, respectively,

of Pt.

Let s = (s1, s2, s3). Consider the hexagon Hs := ABCDEF ⊂ H2 as in Fig. 10: l1 is

the edge CD, l2 is the edge AB, and l3 is the edge EF. Consider the axes of the segments BC,

DE, FA. The three axes all meet in a common point H. Let HAB, HDC, HEF be the orthogonal

projections of H on the geodesics containing the segments AB, DC and EF (see also [16]).

Consider two consecutive vertices V, W of the hexagon, the orthogonal projection

HVW of H on the geodesic VW. We define the signed distance of HVW from V:

d±(HVW , V) := ε · d(HVW , V),

where ε = 1 if HVW lies on the geodesic ray starting from V that contains VW, and ε = −1

if HVW lies on the geodesic ray starting from V that does not contain VW.

Lemma 5.13. We have

d±(HEF , F) = d±(HAB, A) = s1

2
,

d±(HDC, C) = d±(HAB, B) = s2

2
,

d±(HEF , E) = d±(HDC, D) = s3

2
.
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34 D. Alessandrini and V. Disarlo

Fig. 11. Horocyclic foliation.

Proof. The equalities between signed distances come from the construction of H (see

Papadopoulos–Yamada [16]). Using these equalities, we find a linear system, which

admits a unique solution, see Fig. 10:

d±(HDC, D) + d±(HAB, B) = �(l1) ,

d±(HAB, B) + d±(HEF , F) = �(l2) ,

d±(HEF , F) + d±(HDC, D) = �(l3) .

Since by our initial assumptions we have si
2 + si+1

2 = �(li+2) for i = 1, 2, 3, we conclude. �

The following result is an immediate consequence of Lemmas 5.8 and 5.13.

Proposition 5.14. Let t ≥ 0 and let φt : H → Ht be the generalized stretch map as in

Lemma 5.8. Then, the map φt sends the point HDC of H to the point HDC of Ht. Moreover,

if s1 ≥ 0, φt sends the points HDE and HAB of H to the points HDE and HAB, respectively,

of Ht.

5.6 The horocyclic foliation

We will now construct a partial foliation K, called the horocyclic foliation, in every

quadrilateral and pentagonal piece, see Fig. 11. Our aim is to prove Propositions 5.16

and 5.19.
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Fig. 12. Lemma 5.16.

For a quadrilateral piece Q, see Fig. 11. Recall that Cu, Du denote the vertices of

Qd
s which are the reflection of C, D. Denote by OC, OD the points of CD that are the nearest

point projections of Cu, Du, respectively. We consider a partial foliation KC whose leaves

are all the horocycles centered at C, which intersect the side CD between C and OC.

Similar definition for a partial foliation KD.

Definition 5.15 (Horocyclic foliation). The horocyclic foliation K is the union of the

two partial foliations KC and KD.

From the computations in the proof of Lemma 5.9 we have

d(OQ, OC) = d(OQ, OD) = 1
2 log(1 + e−s).

For d ≥ 1
2 log(1 + e−s), we denote by hd

C the only horocycle in KC where the distance

between OQ and its intersection with the edge CD equals d.

Lemma 5.16. The map φt in Lemma 5.8 maps the leaf hd
C of K in Q to the leaf hetd

C of K
in Qt affinely. Similarly, φt maps the leaf hd

D of K in Q to the leaf hetd
D of K in Qt affinely.

Proof. The map φt is the average of the two maps �t and σ t ◦ �t ◦ σ (see the proof of

Lemma 5.8). The map �t is represented on the left-hand side of Fig. 12, the map σ t◦�t◦σ

on the right-hand side. Each map sends the horocycle hd
C , with d ≥ 1

2 log(1 + e−s), to a

horocycle, hence their average will also send this horocycle to a horocycle, which must

be hetd
C by part (2) and (3) of Lemma 5.8. This horocycle is still in K for Qt, because a

simple computation shows that if d ≥ 1
2 log(1 + e−s) then etd ≥ 1

2 log(1 + e−ets).
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�

Now, let P be a pentagonal piece. Using the notation as in the proof of

Lemma 5.11, denote by OW the point of D̃Ẽ that is the nearest point projection of W.

Definition 5.17 (Horocyclic foliation). We define the horocyclic foliation K as the

partial foliation whose leaves are all the horocycles centered at D̃, which intersect D̃Ẽ

between D̃ and OW .

Lemma 5.18. The point OW lies on the half-line D̃Ẽ, and we have

d(OW , Ẽ) = s2

2
+ 1

2 log
(

es1 + 1

es2 + 1

)
.

Proof. From the computation in the proof of Lemma 5.11, we have

Im(OW) = W + 1 = r2 .

Since r > 1, we see that OW is above Ẽ and their distance is

d(OW , Ẽ) = log(r) = 1
2 log

(
es2(es1 + 1)

es2 + 1

)
.

�

For d ≥ s2
2 + 1

2 log
(

es1 + 1

es2 + 1

)
, we denote by hd the only horocycle in K where the

distance between OW and its intersection with the edge D̃Ẽ equals d.

Lemma 5.19. The map φt from Lemma 5.8 maps the leaf hd of K in P to the leaf hetd

of K in Pt affinely.

Proof. The map φt is the average of the two maps �t and σ t ◦ �t ◦ σ (see the proof of

Lemma 5.8). Each of the two maps sends the horocycle hd, with d ≥ s2
2 + 1

2 log
(

es1 + 1

es2 + 1

)
,

to a horocycle, hence their average will also send this horocycle to a horocycle, which

must be hetd by parts (2) and (3) of Lemma 5.8. This horocycle is still in K for Pt, because

a computation shows that d ≥ s2
2 + 1

2 log
(

es1 + 1

es2 + 1

)
implies

etd ≥ ets2

2
+ 1

2 log

(
eets1 + 1

eets2 + 1

)
.

�
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Remark 5.20. It might seem more natural to extend the horocyclic foliation K on a

quadrilateral piece Q until the point OQ as in Fig. 6. Similarly, for a pentagonal piece P,

it might seem more natural to extend it until the point HDE as in Fig. 8. Unfortunately φt

does not map all the horocycles of these extended foliations to horocycles. This property

only holds for the leaves of K.

6 The Boundary Block

Let X ∈ Teich(S) and λ a maximal lamination on X. In this section and the following,

we construct some auxiliary surfaces that we will use to define our generalized stretch

lines. Here we define the boundary block of λ in X, that is the subset of X obtained as

the union of all the geometric pieces that are not ideal triangles. It comes equipped with

a finite maximal lamination λB, consisting of the boundary leaves of these pieces. The

boundary block is non-empty if and only if at least one of the leaves of λ is orthogonal

to the boundary of X. After the definition of the boundary block, we will describe how

to “stretch” it using the results of Section 5.

6.1 Definition of the boundary block

We define the boundary block of λ as the subset B ⊂ X obtained as a union of all

the geometric pieces of X \ λ that have at least one edge on ∂X, that is, quadrilaterals,

pentagons, and hexagons:

B :=
⋃

{Gi | Gi is a geometric piece of X \ λ of type (2), (3) or (4) } ⊂ X .

By construction B is a (possibly disconnected) 2-manifold with boundary. Notice

that its boundary in general might not be compact. The inclusion map B ↪→ X induces

via pull-back a Riemannian metric on B, which turns B into a (possibly disconnected)

complete hyperbolic surface of finite volume. Hence, the connected components of B are

convex hyperbolic surfaces. Notice that the inclusion map B ↪→ X is a 1-1 local isometry,

but not necessarily an isometric embedding in the sense of metric spaces. Indeed, the

infinite geodesics in the boundary of the quadrilateral and pentagonal pieces might

spiral in a bounded region of X, but they are not contained in a bounded region for the

hyperbolic metric on B.

The boundary of B contains compact and non-compact components. We will

denote by ∂cB the union of the compact components of ∂B, and by ∂ncB the union of
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Fig. 13. A cycle c ⊂ ∂ncB and its associated crown C ⊂ B.

the non-compact components of ∂B:

∂B = ∂cB ∪ ∂ncB.

The compact boundary components are also boundary components of X. The non-

compact boundary components are bi-infinite geodesics that are boundary of quadrilat-

erals. Every non-compact boundary component of B has two ideal vertices correspond-

ing to two spikes.

Definition 6.1 (Cycle in ∂ncB). A cycle in ∂ncB is a cyclically ordered set c := {b1, . . . , bs}
of components of ∂ncB such that for every i the geodesic bi shares a spike with bi−1 and

with bi+1, and bs shares a spike with b1. We will denote by Qi the quadrilateral piece

containing bi in its boundary. We will also denote by ai the spike shared by bi and bi+1

and by as the spike shared by bs and b1 (see Fig. 13).

The boundary block B has finitely many cycles c1, . . . , cm in ∂ncB. Every cycle ci

in ∂ncB determines a (unique) simple closed geodesic γi in its homotopy class.

Definition 6.2 (Crown spanned by a cycle). The crown spanned by ci is the subsurface

Ci := ConvHull(ci, γi) ⊂ B which is the convex hull of ci and γi. By construction Ci is a

complete hyperbolic surface whose interior is topologically a cylinder, and ∂Ci = γi ∪ ci

(see Fig. 13).

Lemma 6.3. If cj, ck ∈ ∂ncB are distinct cycles, then Cj and Ck are disjoint.
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Generalized Stretch Lines for Surfaces with Boundary 39

Notation 6.4. We will use the following notation:

• C := ⋃
i Ci, where Ci is the crown associated to the cycle ci ⊂ ∂ncB;

• BC := B \ C ⊂ B ⊂ X is the closure of the complement of C in B;

• � = ⋃
γi is the finite union of all the pairwise disjoint simple closed

geodesics γi;

• XC := X \ BC ⊂ X is the complement of BC in X.

The following proposition is an immediate consequence of our constructions:

Proposition 6.5. The maximal lamination λ induces a decomposition of X as follows:

X = XC ∪ B with XC ∩ B = C ,

where XC is a (possibly disconnected) finite hyperbolic surface with the metric induced

by X and

∂XC = � ∪ (∂X \ ∂B) .

Furthermore, all of the following holds:

• λB := {l ∈ λ | l is a leaf entirely contained in B} is a maximal lamination for B;

• λXC
:= {l ∈ λ | l is a leaf entirely contained in XC} is a lamination for XC;

• λB ∩ λXC
is the union of the non-compact boundary components of B;

• λ = λB ∪ λXC
.

Notice that by definition the following holds:

• λXC
does not contain any leaf that hits the boundary of X perpendicularly;

• XC \ λXC
= ◦

C ∪ ⋃{ ◦
G | G is a triangular geometric piece of X \ λ} .

6.2 Stretching the boundary block

For every t ≥ 0 we will now stretch the boundary block along λB. We will denote the new

hyperbolic surface by Bt
λB

or simply Bt.

As a 1st step, for every geometric piece Gi involved in the definition of B

consider its stretched analog Gt
i defined in Section 5. We define Bt to be the (possibly

disconnected) surface obtained by glueing together these Gt
i ’s following the glueing
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40 D. Alessandrini and V. Disarlo

pattern of the corresponding Gi’s in B:

Bt :=
⋃

{Gt
i | Gi is a geometric piece of X \ λ of type (2), (3), or (4) } .

The edges of the pieces are glued pairwise via isometries according to the following

rules:

• When two pieces are glued along edges of finite length, our definition of

the Gt
i guarantees that the corresponding edges have the same length, hence

there is only one way to glue them by an isometry;

• When two pieces are glued along half-infinite edges, again there is only one

way to glue them by an isometry and making the common vertices coincide

(for the quadrilateral pieces, the half-infinite edges are AD or BC in Fig. 6,

for the pentagonal pieces the half-infinite edges are AD or CD in Fig. 8);

• Two pieces are glued together along a bi-infinite edge if and only if both

are quadrilaterals. If s0 is the shear between G1 and G2 for the surface B

according to Definition 5.4, we glue Gt
1 and Gt

2 by an isometry with shear

et · s0.

Notice that all the glueings are well defined. As a consequence, we have the following:

Lemma 6.6. Bt is a (possibly disconnected) complete hyperbolic surface of finite

volume diffeomorphic to B.

By construction every cycle of bi-infinite leaves ci ⊂ ∂ncB corresponds to a cycle

cit ⊂ ∂ncBt. Every cit determines a simple closed geodesic γit and a crown

Cit := ConvHull(cit , γit) ⊂ Bt ∼ .

The Cit ’s are all disjoint, we denote their (disjoint) union by

Ct :=
⋃

Cit ⊂ Bt ∼ .

Proposition 6.7 (Existence of a stretch map for B). For every t ≥ 0 there exists a

continuous map βt : B → Bt homotopic to the identity with the following properties:

1. βt(∂B) = ∂Bt;

2. βt stretches the arc length of the leaves of λB by et;
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Fig. 14. The λ-decomposition of X when C is connected and � = {γ }.

3. on every geometric piece G in B \ λB the map βt restricts to βt|G = φt : G → Gt

as in Lemma 5.8;

4. Lip(βt) = et.

Proof. We define βt by glueing together the maps φt : Gi → Gt
i as in Lemma 5.8

following the glueings of the Gt
i ’s in Bt. We have that Lip(βt) ≤ et by Lemma 4.1, and

Lip(βt) ≥ et because βt stretches the arc length of the leaves of λB by et. �

7 The Triangulated Surface

Here we will construct our 2nd auxiliary surface. Again, let X ∈ Teich(S) and λ be a

maximal lamination on X. In Section 6.1, we defined the subsurface XC endowed with

the lamination λXC
. Notice that λXC

is not maximal for XC: it divides XC into triangles

and the crowns Cj (see Fig. 14). We will define a new complete hyperbolic surface: the

triangulated surface XA. This surface will extend XC, that is, it will come equipped with

an isometry g : XC ↪→ XA .

The triangulated surface is not embedded in X, it will be constructed by suitably

gluing new triangles to the crowns Cj of XC. The surface XA will also be equipped with

a maximal lamination λA ⊃ λXC
such that g(λ ∩ XC) ⊂ λA ∩ XC and XA \ λA is a union of

ideal triangles (Fig. 15).

We will then stretch the triangulated surface XA by using Bonahon’s theory of

cataclysms (see Section 3.4), which uses a cocycle to deform a triangulated surface.
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42 D. Alessandrini and V. Disarlo

Fig. 15. The surface XA.

We will first stretch the auxiliary cylinders in Section 7.3, and finally we will define

the stretched triangulated surface, by constructing a suitable cocycle in Section 7.4. The

stretched boundary block and the stretched triangulated surface will be key ingredients

in the construction of the generalized stretch lines discussed in Section 8.

7.1 Extension of a crown

As a 1st step in the construction of XA, we will first work with crowns. Consider a

crown Cj ⊂ XC. We will extend it to a complete hyperbolic surface Aj, homeomorphic to

an annulus, equipped with an isometry

fj : Cj ↪→ Aj

and a finite maximal lamination δAj
with fi(λ ∩ Cj) ⊂ δAj

∩ Cj .

For every crown Cj and every geometric piece Gk, we define the region

ζ
j
k := Gk ∩ Cj, see Fig. 13. Now each crown is decomposed as Cj = ⋃

k ζ
j
k. For every

region ζ
j
k, we will now define a triangulated ideal polygon Ĝk with an isometry ζ

j
k ↪→ Ĝk.

After this, we will define Aj by replacing each ζ
j
k with Ĝk.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnab222/6366387 by C

olum
bia U

niversity user on 20 O
ctober 2022



Generalized Stretch Lines for Surfaces with Boundary 43

Fig. 16. Construction of Ĝk.

We will consider three cases. Every region ζ
j
k has one or two spikes: if it has two

spikes, then Gk is a quadrilateral, see Case (1) below; if it has one spike there are two

possibilities, either Gk is a pentagon, as in Case (2) below, or Gk is again a quadrilateral

and one of the adjacent pieces is again a quadrilateral glued to Gk along a bi-infinite

edge, see Case (3) below.

Defining Ĝk: Case (1) We assume that ζ
j
k has two spikes and ζ

j
k ⊂ Gk = Q is a

quadrilateral, denoted by Q := ABCD ⊂ H2, see Fig. 16. We orient the finite edge CD

from C to D, according to the orientation of Q. We define Ĝk as the double of Q along

CD, as in Fig. 16:

Ĝk = Qd := ABC′D′ .

This ideal quadrilateral will be triangulated by adding the diagonal BD′. The

diagonal can be chosen in a consistent way using the orientation of CD. We will call the

edges BC′ and AD′ special edges, and the points C and D special points.

Defining Ĝk: Case (2) We assume that ζ
j
k has one spike and ζ

j
k ⊂ Gk = P is a pentagon,

denoted by P := ABCDE ⊂ H2 as in Fig. 16. We orient the edge CD of P opposite

to the spike from C to D, following the orientation of P. We define D′, B′, E′ ∈ ∂H2

as the extremes of the geodesics CD, AB, AE on the side of D, B, E, respectively.

We define

Ĝk := AB′D′E′ .
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44 D. Alessandrini and V. Disarlo

This ideal quadrilateral will be triangulated by adding the diagonal AD′. We will call

the edges AB′ and AE′ special edges, and the points B and E special points.

Defining Ĝk: Case (3) We assume that ζ
j
k, ζ j

k+1 both have one spike and ζ
j
k ⊂ Gk = Q,

ζ
j
k+1 ⊂ Gk+1 = Q′, where both Q,Q′ are quadrilaterals, denoted by Q := ABCD,Q′ :=

AFED, where AD is the bi-infinite edge they share, see Fig. 16. We define B′, C′, E′, F ′ ∈
∂H2 as the endpoints of the geodesics AB, DC, DE, AF on the side of B, C, E, F, respectively.

If the common spike of ζ
j
k and ζ

j
k+1 is D, we define

Ĝk := ADC′B′ and Ĝk+1 := ADE′ .

The ideal quadrilateral Ĝk will be triangulated by adding the diagonal B′D. We will call

the edges AD, C′D its special edges, and the points OQ and C its special points. For the

ideal triangle Ĝk+1, we will call the edges AD, DE′ its special edges and the points OQ′

and E its special points.

If the common spike of ζ
j
k and ζ

j
k+1 is A, we define

Ĝk := AB′D and Ĝk+1 := AF ′E′D .

For the ideal triangle Ĝk we will call the edges AD, AB′ its special edges and the points

OQ and B its special points. The ideal quadrilateral Ĝk+1 will be triangulated by adding

the diagonal AE′. We will call the edges AD, AF ′ its special edges, and the points O′
Q and

F its special points.

Definition of the auxiliary cylinder In all cases above, we have an isometry ζ
j
k ↪→ Ĝk.

Now we define Aj glueing together the Ĝk’s according to the glueing pattern of the

associated ζ
j
k ⊂ Gk:

Aj :=
⋃{

Ĝk | Ĝk is the triangulated ideal polygon tailored to Gk ⊃ ζ
j
k as above

}
/ ∼ ,

where Ĝh and Ĝh′ are glued together if and only if ζ
j
h and ζ

j
h′ are adjacent in Cj or,

equivalently, if and only if their associated geometric pieces Gh and Gh′ are adjacent

in B. More precisely, consider two consecutive geometric pieces Gh,Gh+1, and denote

by eh ⊂ Gh and eh+1 ⊂ Gh+1 the two edges that are glued together in B. We denote by
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Generalized Stretch Lines for Surfaces with Boundary 45

Fig. 17. Aj = Ĉj ∪ R̂j with Ĉj ∩ R̂j = γ̂j, fj : Cj → Ĉj ⊂ Aj and Ph ∼ Ph+1.

êh ⊂ Ĝh and êh+1 ⊂ Ĝh+1 the corresponding special edges of Ĝh, Ĝh+1, and by P̂h ∈ êh and

P̂h+1 ∈ êh+1 their special points. There are two cases:

• if eh, eh+1 are half-infinite edges, glue together êh, êh+1 with an isometry that

makes the special points P̂h and P̂h+1 coincide (see Fig. 17).

• (this can happen only in the Case (3)) if eh, eh+1 are bi-infinite edges, the

glueing procedure of Ĝh and Ĝh+1 is the one described in Case (3) above. The

edges êh, êh+1 are glued together with an isometry that keeps the special

points P̂h and P̂h+1 at a distance equal to the shear between the quadrilateral

pieces Gh,Gh+1.

In this way, for every crown Cj ⊂ C, we constructed a space Aj that we call the

auxiliary cylinder of Cj. We remark that our construction relies only on the choice of an

orientation on X. It satisfies the following properties:

Lemma 7.1. For every Cj, the surface Aj constructed above is a complete hyperbolic

surface whose interior is homeomorphic to an annulus. Moreover, there exists an

isometry fj : Cj ↪→ Aj.

Proof. By construction Aj is an annulus and ∂Aj = {c′
j, c′′

j } where c′
j, c′′

j are cycles of

bi-infinite geodesics, with the leaves of c′
j in bijection with leaves of cj ∈ ∂Cj. Moreover,

by construction, there exists ε > 0 and an isometry fε : Nε(cj) ↪→ Nε(c
′
j). Denote by γ̂j
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46 D. Alessandrini and V. Disarlo

the core geodesic of the annulus and Ĉj := ConvHull(c′
j, γ̂j) ⊂ Aj. We have that Ĉj is a

complete hyperbolic surface. Moreover fε extends to an isometry fj : Cj ↪→ Ĉj. �

We will denote by δAj
the (finite) maximal lamination of Aj given by the union

of all the edges of the ideal triangles in the triangulations of the Ĝk’s. This lamination

has a natural partition, which will be useful later: we will denote by δ′
Aj

the union of all

the special edges of the Ĝk’s by δ′′
Aj

is the union of all the extra diagonals we added to

the Ĝk’s.

7.2 The triangulated surface

We define the auxiliary multi-cylinder A as the disjoint union of all the auxiliary

cylinders Aj. There is an isometry f : C ↪→ A defined as f (z) := fj(z) if z ∈ Cj. This

multi-cylinder carries a finite maximal lamination δA defined as the union of all the

δAj
. This is again partitioned in two parts: δ′

A := ⋃
j δ′

Aj
consisting of the special edges,

δ′′
A := ⋃

j δ′′
Aj

made of the extra diagonals.

Notation 7.2. The following notation will be used here and in the rest of the paper:

• Ĉj := fj(Cj), Ĉ := f (C) = ⊔
Ĉj;

• γ̂j := fj(γj), �̂ := f (�) = ⊔
γ̂j;

• R̂j := Aj \ Ĉj = Aj \ fj(Cj), R̂ := A \ Ĉ = A \ f (C) = ⊔
R̂j.

Thus, in this notation we have A = Ĉ ∪ R̂ with R̂ ∩ Ĉ = �̂ and f : C → Ĉ is an

isometry (see Fig. 17). As above, R̂ is a complete hyperbolic surface.

Definition 7.3 (The triangulated surface). We define a surface XA, called the triangu-

lated surface as follows (see also Fig. 15):

XA := XC

⊔
A∼, where z ∼ f (z) for every z ∈ C.

Let π : XC
⊔

A → XA be the quotient map associated. We denote by g := π| : A → XA the

restriction of π to A, and by λA the lamination

λA := π(λXC
) ∪ π(δA) ⊂ XA.
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We denote by μA the closure of π(δA) in XA, a sublamination of λA. We denote by νA the

lamination μA \ π(δA), a sublamination of λA. Notice that

νA ⊂ μA ⊂ λA.

Proposition 7.4. The quotient map π : XC
⊔

A → XA induces on XA a structure

of (possibly disconnected) complete hyperbolic surface of finite volume with non-

compact boundary. The following diagrams are commutative and all arrows are 1-1

local isometries:

where ι : C ↪→ XC is the canonical inclusion; g := π| : A → XA and π| : XC → XA are

the restrictions of π . Moreover, λA := π(λXC
) ∪ π(δA) is a maximal lamination on XA, and

π| : XC → XA \ g(R̂) is an isometry.

Proof. Notice that, by our constructions, XA can be equivalently defined as follows:

XA = XC

⊔
R̂∼, where z ∼ f (z) for every z ∈ �.

So XA is obtained glueing together two complete hyperbolic surfaces (XC and R̂) along

finitely many compact connected components of their boundary (� ⊂ ∂XC and �̂ ⊂ ∂R̂)

via a prescribed isometry (f| : � → �̂). Therefore, XA is also a (possibly disconnected)

complete hyperbolic surface, and the two restrictions π|A, π|XC
of π are both 1-1 local

isometries. The following holds by our definitions of B, XC and λXC
:

XC \ λXC
= ◦

C ∪ { ◦
G | G is a triangular geometric piece in X \ λ} .

By construction A \ δA is a union of ideal triangles. Since π identifies C with Ĉ ⊂ A, we

thus have that XA \ λA is a union of ideal triangles as well, that is, λA is maximal. �
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48 D. Alessandrini and V. Disarlo

Fig. 18. Notation on Aj.

7.3 Stretching the auxiliary cylinders

We now want to stretch the triangulated surface XA. We will start by stretching the

auxiliary cylinders. In Section 7.1 we defined the auxiliary cylinder Aj for every crown

Cj. In Section 6.2 we defined the stretched boundary block Bt and we introduced the

crown Ct
j in Bt. We now want to define the stretched auxiliary cylinder At

j for every

parameter t ≥ 0.

Definition 7.5 (Stretched auxiliary cylinder). We define the stretched auxiliary cylin-

der At
j as the auxiliary cylinder associated to the crown Ct

j , that is, we apply the

definition of Section 7.1 to the crown Ct
j . By construction we also get an isometry

f t
j : Ct

j ↪→ At
j and a maximal finite lamination δAj

on At
j . By Lemma 7.1 At

j is a complete

hyperbolic surface whose interior is homeomorphic to an annulus.

Notation 7.6. We denote by cj := ⋃
i bj

i ⊂ ∂Aj the cycle of bi-infinite leaves that

corresponds to the cycle with the same name in B. We say:

• bj
i is the bi-infinite leaf in ∂Q̂i ∩ ∂Aj with Qi := Qsi

⊂ B a quadrilateral piece.

The bj
i’s are enumerated so that any two consecutive bj

i,b
j
i+1 form a spike

aj
i ⊂ Aj;

• the leaves of δAj
entering the spike aj

i are denoted by e1
ij, . . . , eni

ij (Fig. 18). Note

that δAj
= ⋃

aj
i
{e1

ij, . . . , eni
ij }.

The lamination δAj
on Aj is actually an ideal triangulation. We associate to each

edge the shear between the two adjacent triangles (see Definition 5.4).
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Fig. 19. Comparing At
j with (Aj)

t
Th.

Fig. 20. The displacement function δ.

Definition 7.7 (Shear coordinates for Aj and At
j ). We denote the shear coordinates of

the hyperbolic structure Aj by s0(ek
ij), and the shear coordinates of At

j by st(ek
ij).

If ek
ij ∈ δAj

is not a special edge then st(ek
ij) = et · s0(ek

ij) by construction of At
j .

Otherwise, in general st(ek
ij) �= et · s0(ek

ij) (see Fig. 19 and Proposition 7.9).

7.3.1 Stretch difference formula

The auxiliary cylinder Aj is triangulated by δAj
, so it can be stretched using Thurston’s

technique [20]. We denote by (Aj)
t
Th the Thurston’s stretch of Aj. The shear coordinates

of (Aj)
t
Th are et · s0(ek

ij) by construction. In Proposition 7.9 we quantify the difference

between the shear coordinates of At
j and (Aj)

t
Th.

Notation 7.8. In this section and in the proof of Lemma 8.3, if A, B are points on the

bi-infinite edge of a quadrilateral piece, we will denote by A − B their signed distance,

with the sign given by the orientation of the surface (Fig. 20).
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50 D. Alessandrini and V. Disarlo

Fig. 21. The horocycle map ηt : bj
i → bj

i+1.

Definition 7.9 (Displacement function). Let Qs be the quadrilateral piece of shear

s ∈ R and Ts ⊂ Qd
s be the ideal triangle adjacent to the bi-infinite edge b ⊂ Qs. Let

OQs
be the center of Qs and OTs

the center of Ts on the edge b (see Fig. 20). We define the

displacement function δ : R → R+ as follows:

δ(s) := OTs
− OQs

.

(Note that the function δ : R → R+ is continuous and bijective.)

Definition 7.10 (Horocyclic map). For every spike aj
i ∈ At

j consider the horocyclic map

ηt : bj
i → bj

i+1,

where ηt(P) ∈ bj
i+1 is the endpoint of the (unique) horocycle around the spike aj

i through

P ∈ bj
i (Fig. 21).

By definition of the shear coordinates on At
j we have

ni∑
k=1

st(ek
ij) = ηt(OTi

) − OT t
i+1

. (7)

Lemma 7.11. For every t ≥ 0 we have ηt(OQt
i
) − OQt

i+1
= et · [η0(OQ0

i
) − OQ0

i+1
].

Proof. See Fig. 21. Let ht be the horocycle around the spike aj
i passing through OQt

i
. We

denote by ek0
ij , ek1

ij , . . . , e
kp

ij the special edges that ht meets in order. For every eka
ij , denote

by P̂ka
ij

t
the special point on that edge (see definition in Section 7.1).
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Claim (1): d(ht ∩ ek0
ij , P̂k0

ij

t
) = etd(h0 ∩ ek0

ij , P̂k0
ij

0
) . To see this, notice that by Lemma

5.9, d(ht∩ek0
ij , P̂k0

ij

t
) is equal to the parameter of the quadrilateral Qt

i , which is et times the

parameter of the quadrilateral Q0
i , which again by Lemma 5.9 is equal to d(h0∩ek0

ij , P̂k0
ij

0
).

Claim (2): d(ht ∩ eka
ij , P̂ka

ij

t
) = etd(h0 ∩ eka

ij , P̂ka
ij

0
), for every special edge eka

ij . By

induction on a, this is true for the previous edge eka−1
ij . For the edge eka

ij it then follows

from Lemmas 5.11 or 5.9.

Claim (3): d(ht ∩ bj
i+1, OQt

i+1
) = etd(h0 ∩ bj

i+1, OQ0
i+1

) , which is the statement. We

use Step (2) applied to the case a = p (the last special edge), then we conclude as in Step

(1), applying Lemma 5.9 to the quadrilaterals Qt
i+1 and Q0

i+1. �

We are now ready to prove the stretch difference formula.

Proposition 7.12 (Stretch difference formula). The following holds:

ni∑
k=1

st(ek
ij) −

ni∑
k=1

et · s0(ek
ij) = −δ(et · si) + et · δ(si) − δ(et · si+1) + et · δ(si+1) .

Proof. First compute
∑ni

k=1 st(ek
ij) using (7):

ni∑
k=1

st(ek
ij) = ηt(OTi

) − OT t
i+1

=

= [ηt(OT t
i
) − ηt(OQt

i
)] + [ηt(OQt

i
) − OQt

i+1
] + [OQt

i+1
− OT t

i+1
] .

(8)

Let us now compute separately each summand in the 2nd member:

ηt(OT t
i
) − ηt(OQt

i
) = OQt

i
− OT t

i
= −δ(et · si), by Definition 7.9;

ηt(OQt
i
) − OQt

i+1
= et · [η0(OQ0

i
) − OQ0

i+1
], by Lemma 7.11;

OQt
i+1

− OT t
i+1

= −δ(et · si+1), by Definition 7.9.

Substituting the equations above in (8), we find

ni∑
k=1

st(ek
ij) = −δ(et · si) − δ(et · si+1) + et · [η0(OQ0

i
) − OQ0

i+1
] . (9)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnab222/6366387 by C

olum
bia U

niversity user on 20 O
ctober 2022



52 D. Alessandrini and V. Disarlo

Now we compute
∑ni

k=1 et · s0(ek
ij) using (9) evaluated in t = 0:

ni∑
k=1

et · s0(ek
ij) = et ·

ni∑
k=1

s0(ek
ij) = −et · δ(si) − et · δ(si+1) + et · [η0(OQi

) − OQ0
i+1

] . (10)

Combining (9) and (10), we get the following and we are done:

ni∑
k=1

st(ek
ij) −

ni∑
k=1

et · s0(ek
ij) = −δ(et · si) + et · δ(si) − δ(et · si+1) + et · δ(si+1) . �

7.4 Stretching the triangulated surface

In this section we will stretch the triangulated surface XA using Bonahon’s theory of

cataclysms (see Section 3.4). For every t ≥ 0 we will define a complete hyperbolic surface

((XA)t, λA, gt) with a 1-1 local isometry gt : At ↪→ (XA)t, where At is the hyperbolic

surface obtained stretching the auxiliary multi-cylinder along δA.

Definition 7.13 (Stretched auxiliary multi-cylinder). We define the stretched auxiliary

multi-cylinder At and its maximal lamination δA by

At :=
⊔

j

At
j and δA :=

⊔
j

δAj
.

It comes with an isometry f t := ⊔
j f t

j : Ct
j → At

j .

Notation 7.14. We will use the following notation:

• Ĉt
j := f t(Ct

j );

• Ĉt := f t(Ct);

• �̂t := f t(�t);

• R̂t := At \ Ĉt = At \ f t(Ct).

7.4.1 Construction of ((XA)t, λA, gt)

By Proposition 7.4 we have that (XA, λA) is a complete hyperbolic surface of finite

volume with non-compact boundary and λA is a maximal lamination whose complement

contains only triangles. We will first consider its double, that is, the surface (Xd
A, λd

A)

defined as follows.
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Generalized Stretch Lines for Surfaces with Boundary 53

Definition 7.15 (Double of XA). We define

Xd
A = XA � X ′

A/ ∼ ,

where X ′
A is an isometric copy of XA with the opposite orientation, and ∼ identifies the

boundary of XA and X ′
A with the identity map. The lamination λd

A is defined as

λd
A = λA ∪ λ′

A,

where λ′
A is the copy of λA on S′

A. If A1, . . . , Am are the auxiliary cylinders in XA, then

Am+1, . . . , A2m are the auxiliary cylinders in X ′
A (Ai+m is the mirror copy of Ai).

The following fact is immediate.

Proposition 7.16. The surface Xd
A is a finite hyperbolic surface without boundary and

λd
A is a maximal lamination on Xd

A.

For every t ≥ 0 we will now define a new hyperbolic structure (Xd
A)t by defining

a suitable cocycle for λd
A (see Bonahon’s Theorem 3.7). Let ρ0 be the shearing cocycle for

the lamination λd
A associated to the hyperbolic structure Xd

A. Note that for every t ≥ 0 the

cocycle et ·ρ0 is the cocycle of the hyperbolic structure (Xd
A)t

Th obtained via the Thurston

stretch of Xd
A. We will define our hyperbolic structure (Xd

A)t on Xd
A by adding a term to

the cocycle et · ρ0.

Definition 7.17 (Cocycle ρt on λd
A). Choose a train track τ snugly carrying λd

A such

that τ contains one subtrack τij as in Fig. 18 for every spike aj
i in one of the Aj, for

j ∈ {1, . . . , 2m}. (Here we label every edge of τij by the unique edge of δAj
∪ ∂Aj it carries,

and the switch vj
i corresponds to the spike aj

i.)

We define an assignment of real weights εt on the edges of τ . Define εt(e) := 0

for every e ∈ τ such that e �∈ ⋃
ij τij. For e ∈ τij the assignment εt(e) is the following:

εt(aj
i) := 0, (11)

εt(ek
ij) := −ets0(ek

ij) + st(ek
ij) for k = 1, . . . , ni, (12)

εt(bj
i) := δ(et · si) + et · δ(si), (13)

εt(bj
i+1) := δ(et · si+1) + et · δ(si+1), (14)
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where the functions st and δ were defined in Section 7.3. Now we define (ρt(e))e∈τ as

ρt(e) := et · ρ0(e) + εt(e) .

In the next section we will prove the following:

Proposition 7.18. For every t ≥ 0, the assignment of real weights ρt on the edges of

τ defines the shearing cocycle for the lamination λd
A of a hyperbolic structure on Xd

A,

which we will denote by (Xd
A)t.

The lamination λd
A and the cocycle ρt are both symmetric for the involution of

Xd
A, hence the hyperbolic structure (Xd

A)t is also symmetric.

Definition 7.19 (Triangulated stretched surface). The triangulated stretched surface

(XA)t is the restriction of the hyperbolic structure (Xd
A)t to the surface XA. (Note that Xt

A

is a complete hyperbolic surface of finite volume.)

Proposition 7.20. There is a 1-1 local isometry gt : At ↪→ (XA)t. When t = 0 we have

((XA)0, λA, g0) = (XA, λA, g).

Proof. By definition, for every ek
ij ∈ δA we have

ρt(ek
ij) = et · ρ0(ek

ij) + εt(ek
ij) = et · s0(ek

ij) + (−ets0(ek
ij) + st(ek

ij)) = st(ek
ij) ,

which are the shear coordinates of At for the ideal triangulation δA. �

We also want to construct a stretch map for the stretched triangulated surface

(XA)t. This will be given by the composition of Thurston’s stretch map and a shear map.

Consider the two hyperbolic surfaces (Xd
A)t

Th and (Xd
A)t. We will denote by κt the shear

map between them with respect to the lamination λd
A:

κt : (Xd
A)t

Th \ λd
A → (Xd

A)t \ λd
A.

Every triangle in the complement of λd
A in (Xd

A)t
Th is mapped isometrically to the

corresponding triangle in the complement of λd
A in (Xd

A)t (see Bonahon [2, Sec. 4]).

Thurston [20] called this map a cataclysm.
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Consider the sublamination μA ⊂ λA defined in Definition 7.2. This is the closure

of the image of the lamination δA. Its double, μd
A is a lamination on Xd

A.

Lemma 7.21. The map κt extends continuously to an isometry

κ̄t : (Xd
A)t

Th \ μd
A → (Xd

A)t \ μd
A .

Proof. Notice that (Xd
A)t

Th\μd
A is an open subset of (Xd

A)t
Th. Given a point x ∈ (Xd

A)t
Th\μd

A,

we can choose a ball B centered at x and contained in (Xd
A)t

Th\μd
A. Notice that the cocycles

associated to the two hyperbolic structures (Xd
A)t

Th and (Xd
A)t differ by the cocycle εt,

which is supported in μA. Hence, when we restrict our attention to the ball B, the two

cocycles agree. To prove the proposition in the ball B, we can then proceed as in the proof

of [2, Lemma 11]. The proof given there uses the horocyclic foliation of a triangulated

surface, see also Section 8.2.2 where we will generalize that notion for surfaces with

boundary. �

We are now ready to construct the stretch map for (XA)t \ μA.

Proposition 7.22 (Existence of a stretch map for XA \ μA). For every t ≥ 0, there exists

a continuous map ψ t : XA \μA → (XA)t \μA homotopic to the identity with the following

properties:

1. ψ t stretches the arc length of the leaves of λA \ μA by et;

2. on every triangular geometric piece T in XA \ λA, the map ψ t restricts to

ψ t|T = φt : T → T t as in Lemma 5.5;

3. ψ t is locally Lipschitz with local Lipschitz constant equal to et.

Proof. We will denote Thurston’s stretch map by

τ t : Xd
A → (Xd

A)t
Th.

This map was introduced in [20]. On every triangle in Xd
A \ λd

A, this map agrees with the

map φt from Lemma 5.5. The map τ t is continuous, stretches the arc length of the leaves

of λA by et and Lip(τ t) = et. We define the map ψ t as follows:

ψ t = κ̄t ◦ τ t : XA \ μA → (XA)t \ μA.

It satisfies the stated properties because of the properties of τ t and Lemma 7.21. �
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56 D. Alessandrini and V. Disarlo

7.4.2 Proof of Proposition 7.14

Lemma 7.23. The assignments of real weights (εt(e))e∈τ on the edges of τ defines a

transverse cocycle for the lamination λd
A.

Proof. By Theorem 3.7 we need to check that the switch relations hold at every switch

v ∈ τ . First, assume v = vj
i ∈ τij as in Fig. 18. We will check the switch relation:

εt(aj
i) = εt(bj

i) + εt(bj
i+1) +

ni∑
k=1

εt(ek
ij) . (15)

This equation is satisfied because it is equivalent to Lemma 7.12:

εt(bj
i) + εt(bj

i+1) +
ni∑

k=1

εt(ek
ij) = 0 . (16)

If v is a switch of τ but not a switch of τij then εt(e) = 0 for every edge e of τ concurring

in the switch. Therefore, the switch condition at v is satisfied, and we conclude. �

Lemma 7.24. The assignments of real weights (ρt(e))e∈τ on the edges of τ defines a

transverse cocycle for the lamination λd
A.

Proof. By Lemma 7.24, we have εt ∈ H(λd
A,R), so ρt is a linear combination of

transverse cocycles for λd
A. As H(λd

A,R) is a vector space by Theorem 3.7, we have

ρt ∈ H(λd
A,R). �

Lemma 7.25. For every measure μ on λd
A, we have ω(εt, μ) = 0.

Proof. We compute ω(εt, μ) using Lemma 3.9. After a finite sequence of splittings,

τ can be made generic. In particular, splitting each subtrack τij we get to a generic

subtrack τ ′
ij as in Fig. 22. Note that if v is a switch and v �∈ τ ′

ij then εt(er
v) = εt(el

v) = 0

because εt(e) = 0 for every edge e �∈ ⋃
τij. Therefore, we just need to look at all the

switches v ∈ τ ′
ij, and we have

ω(εt, μ) =
∑

j

∑
i

∑
w∈τ ′

ij

[εt(er
w)μ(el

w) − εt(el
w)μ(er

w)].
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Fig. 22. Splitting τij to make it generic.

Note that for every measure μ on λd
A, we must have μ(ek

ij) = 0 for all k = 1, . . . , ni.

Indeed, all of the ek
ij’s enter the same spike aj

i ∈ Aj ⊂ XA, and either all the ek
ij’s enters

the same cusp or they accumulate on the same sublamination of λd
A. In either case for

each of them μ(ek
ij) = 0. It follows that at every switch w �= w0 ∈ τ ′

ij we have

εt(er
w)μ(el

w) = 0. (17)

Moreover, by the switch relations for εt, we have

εt(f1) = εt(aj
i) − εt(bj

i) = −εt(bj
i) (18)

ε(bj
i) + εt(e1

ij) + . . . + εt(eni
ij ) = εt(aj

i) − εt(bj
i+1) = −εt(bj

i+1) (19)

Using (17), (18), and (19) in the computation of ω(εt, μ), we have

ω(εt, μ) =
∑

j

∑
i

∑
w∈τ ′

ij

[μ(el
w)εt(er

w) − εt(el
w)μ(er

w)]

=
∑

j

∑
i

[
μ(bj

i)ε
t(f1) − μ(bj

i+1)[εt(bj
i) + εt(e1

ij) + . . . + εt(eni
ij )]

]
by (17)

=
∑

j

∑
i

[
−μ(bj

i)ε
t(bj

i) + μ(bj
i+1)εt(bj

i+1)
]

by (18) and (19)

=
∑

j

0 = 0 .
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58 D. Alessandrini and V. Disarlo

Indeed, for every j we have

∑
i

[
−μ(bj

i)ε
t(bj

i) + μ(bj
i+1)εt(bj

i+1)
]

= 0

because the bj
i’s form the cycle cj = ⋃

i bj
i ⊂ ∂A�

j . �

Proof of Proposition 7.14. Note that ρ0 is the shearing cocycle associated with a

hyperbolic structure, hence by Theorem 3.10 it satisfies

ω(ρ0, α) > 0

for every transverse measure α on λd
A. By the bi-linearity of ω and Lemma 7.25, for every

transverse measure α on λd
A we have

ω(et · ρ0 + εt, α) = et · ω(ρ0, α) + ω(εt, α) = et · ω(ρ0, α) > 0.

The statement then follows from Theorem 3.10. �

8 Generalized Stretch Lines

In this section we finally prove Theorem 1.1.

8.1 Generalized stretch lines

Let X ∈ Teich(S) and λ a maximal lamination on X. In this section we will define the

generalized stretch line starting from X and directed by λ: for every t ≥ 0 we will define

an element Xt
λ ∈ Teich(S).

In Section 7.4, we defined the stretched triangulated surface (XA)t, with a 1-1

local isometry of the stretched auxiliary multicylinder:

gt : At → (XA)t.

Recall that

At = Ĉt ∪ R̂t,

where Ĉt is the union of m cylinders Ĉt
j that are isometric to cylinders in the stretched

boundary block Bt (see Fig. 15.)
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Generalized Stretch Lines for Surfaces with Boundary 59

We define

(XC)t := (XA)t \ gt(R̂t) ⊂ (XA)t.

This is a hyperbolic structure on a surface with boundary homeomorphic to XC. It

contains a copy of Ct, we will denote the 1-1 local isometry by ht := gt ◦ f t : Ct ↪→ (XC)t.

We can now define the hyperbolic structure Xt
λ, for every t ≥ 0:

Xt
λ := Bt � (XC)t/ ∼,

where ∼ identifies a point z ∈ Ct with the point ht(z) ∈ (XC)t.

Proposition 8.1. Let π : Bt∪(XC)t → Xt
λ be the projection map. The following diagram is

commutative with all arrows 1-1 local isometries, therefore Xt
λ is a hyperbolic structure

on S:

Notice that the lamination λ on Xt
λ is the union

λ = π(λB) ∪ π(λXC
).

Consider the set π(∂ncBt), the image of the union of the non-compact boundary

components of Bt. This set is a union of finitely many geodesics, but it is in general not

closed. Its closure is a sublamination of λ that we will call μX :

μX = π(∂ncBt).

We also denote by νX the lamination

νX = μX \ π(∂ncBt).
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Notice that

νX ⊂ μX ⊂ λ.

These sublaminations are closely related to μA, νA from Definition 7.3.

Definition 8.2. For every X ∈ Teich(S) and λ maximal lamination, the line

sX,λ : R≥0 	 t → Xt
λ ∈ Teich(S)

is a generalized stretch line starting from X and directed by λ.

8.2 Generalized stretch maps

We will now see that the generalized stretch lines verify Theorem 1.1. We will need to

define the generalized stretch map �t : X → Xt
λ.

8.2.1 The generalized stretch map on an open dense subset

We will first define a map in an open dense subset, and later we will extend it

everywhere. Consider the map

αt : X \ νX → Xt
λ \ νX

defined as follows:

αt(z) :=
⎧⎨⎩βt(z) if z ∈ B,

ψ t(z) if z �∈ B,
(20)

where βt : B → Bt is the map constructed in Proposition 6.7, and ψ t : XA\μA → (XA)t\μA

is the map given by Proposition 7.22.

Lemma 8.3. The map αt is well defined on X \ νX and continuous.

Proof. Notice that ψ t is defined in XA \ μA. Every point of X coming from μA is either

in B or in νX , hence αt is well defined on X \ νX . We need to check the continuity of the

map at the points of ∂ncB. Every connected component b of ∂ncB is the bi-infinite edge of

a quadrilateral piece Q, with shear parameter s. The geodesic b is part of the lamination

λA of XA, hence the map ψ t is not defined on b. We can extend it to b in two ways: we
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Generalized Stretch Lines for Surfaces with Boundary 61

denote by ψ t the extension from B, and by ψ t the extension from X \ B. Both extensions

are mapping b to bt, the copy of b in Xt
λ:

ψ t, ψ t : b → bt

ψ t(z) := lim
m→+∞ ψ t(wm), where {wm}m∈N ⊂ Q such that wm → z as m → +∞

ψ t(z) := lim
m→+∞ ψ t(wm), where {wm}m∈N ⊂ X \ B such that wm → z as m → +∞

By the definition of ψ t using shear maps and by the definition of the cocycle εt, we have

ψ t(z) − ψ t(z) = δ(et · s) − etδ(s) , (21)

using Notation 7.8. Now we claim that, for every z ∈ b, we have

βt(z) − ψ t(z) = −δ(et · s) + etδ(s) . (22)

In order to see this, notice that

1. the map ψ t : b → bt fixes OT 0 and stretches the arc length of b by a factor et:

∀P ∈ bi : [ψ t(P) − OT 0 ] = et · (P − OT 0) with ψ t(OT 0) = OT t

2. the map βt : b → bt fixes OQ and stretches the arc length of b by a factor et:

∀P ∈ b : [βt(P) − OQt ] = et · (P − OQ0) with βt(OQ0) = OQt

Putting these formulas together we have

[βt(P) − ψ t(P)] = [OQt − OT t ] + et · [OQ0 − OT 0 ] = −δ(et · s) + et · δ(s) ,

which proves the claim. Now (21) and (22) imply that βt(z) − ψ t(z) = 0, hence βt(z) =
ψ t(z). This shows the continuity of the map αt on X \ νX . �

8.2.2 The horocyclic foliation on X

We will now define a partial foliation on X, called the horocyclic foliation and denoted

by K. Denote by {Gi} the finite set of geometric pieces of X \ λ. For every Gi, we defined a
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horocyclic foliation Ki in Definition 5.6, 5.15, and 5.17. If Gi is an hexagonal piece, Ki is

empty. For every Gi, we denote by Ki the support of Ki. The support of K will be the set

K =
⋃

i

Ki .

On K∩B, we define the partial foliation by glueing the partial foliations Ki on the

pieces Gi that are in B. To define the partial foliation on K \ B, we notice that K \ B ⊂ XA.

The double (XA)d is a finite hyperbolic surface without boundary, hence we can apply

Thurston’s theory [20], and consider Thurston’s horocyclic foliation on (XA)d. The set

K \ B is contained in the support of Thurston’s foliation, and we define our foliation

on K \ B as the restriction of Thurston’s foliation. This defines a partial foliation on X

whose support is K. We will call it the horocyclic foliation on X, and denote it by K. By

definition, for every Gi, the restriction of K to Gi coincides with Ki.

We will now describe how K looks like locally in the neighborhood of every point.

If a point lies in X \ λ, then it is in the interior of a piece Gi. In this case we know that

the horocyclic foliation around this point looks like one of the explicit models given in

Definition 5.6, 5.15, or 5.17. If the point is on λ, then it lies on a geodesic � ⊂ λ. For every

side of �, there can be a geometric piece bounded by � on that side or not. If there is a

geometric piece, then again K looks like one of the explicit models on that side of �. If

there is no geometric piece on that side of �, the situation is even simpler, as we now

describe. For z ∈ �, a small ball centered at z is divided by � in two parts, which we call

half-balls, one on every side of �.

Lemma 8.4. Let z ∈ � ⊂ λ. If on one side � does not bound a geometric piece, then

there exists a small half-ball U centered at z on that side of � such that U is completely

foliated by K with leaves that hit orthogonally � and all the leaves of U ∩ λ.

Proof. Assume that the radius of U is small so that U does not intersect ∂X nor any

leaf of λ of finite length. In particular, U does not intersect any hexagonal piece.

Now, let us work in the universal covering X̃ ⊂ H2. We denote by Ũ a lift of

U. Every connected component of X̃ \ λ̃ is a geometric piece that is a copy of one of

the Gi.

If we assume that the radius of U is also smaller than 1
2 log(3) (the radius of

the inscribed circle to an ideal triangle), then Ũ intersects at most two edges of every

geometric piece, these two edges meet at an ideal vertex of the piece. There is at most

one piece, say G̃0, such that Ũ intersects only one edge of G̃0, see Fig. 23.
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Fig. 23. Lemma 8.4.

There are only finitely many Gi, with finitely many values of the parameters. The

lengths of the horocycles of the Ki passing through the points Oj
T for a triangular piece,

OC, OD for a quadrangular piece, OW for a pentagonal piece have a minimal value D.

We can also assume that the radius of U is smaller than D/2, this is the

situation represented in Fig. 23. Now if Ũ meets two edges of a geometric piece, then the

intersection of Ũ with the piece is completely contained in the support of the horocyclic

foliation. This might still be false for G̃0, but up to reducing again the radius of U, we can

make sure that Ũ does not intersect this piece at all. With this choice of the radius, we

have that U \λ is completely foliated by K, with a foliation made by pieces of horocycles.

This foliation extends nicely to all the leaves of λ contained in U and it is perpendicular

to them, this is proved in [2, Section 2]. �

The definition of the horocyclic foliation works for every finite hyperbolic

surface equipped with a maximal lamination, in particular for Xt
λ, (Xd

A)t, and (Xd
A)t

Th.

Lemma 8.5. Let z ∈ �, for a geodesic � ⊂ νX . Let U be a half-ball centered at z as in

Lemma 8.4. If x, y ∈ U \ νX are in the same leaf for the restriction of K to U, then their

images αt(x), αt(y) are in the same leaf for the horocyclic foliation on Xt
λ.

Proof. If U satisfies the thesis of Lemma 8.4, it is contained in XC. Let f ⊂ U be the

leaf for the restriction of K to U that contains x, y. Every component of f \λ is contained

in a geometric piece, hence it is mapped by αt to a leaf of K.

Let us first assume that x, y are not in B. Recall that αt on them is defined as

ψ t = κ̄t ◦ τ t. Consider the arc fx,y of f between x and y. When fx,y is considered as a

subset of Xd
A, it lies in a leaf of the horocyclic foliation of Xd

A. Thurston’s stretch map

τ t : Xd
A → (Xd

A)t
Th sends fx,y in a leaf of the horocyclic foliation of (Xd

A)t
Th, hence τ t(x) and
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64 D. Alessandrini and V. Disarlo

τ t(y) are in the same leaf in (Xd
A)t

Th. We have to check that κ̄t also sends τ t(x) and τ t(y)

to the same leaf in (Xd
A)t. In order to do this, notice that the horocyclic distance between

κ̄t(τ t(x)) and κ̄t(τ t(y)) is equal to the measure of the arc τ t(fx,y) for εt (see the definition

of cocycle associated to a hyperbolic metric in [2, Section 2]). Since x, y do not lie in B,

the measure of this arc for εt is zero by definition of εt.

Let us now prove the statement when x, y are in B. Notice that every component

of f \λ is mapped by αt to a leaf of K. By the continuity of αt on X \νX (Lemma 8.3), every

connected component of f \ νX is mapped by αt to a leaf of K. �

Proposition 8.6. The map αt : X \ νX → Xt
λ \ νX extends to a continuous map

�t : X → Xt
λ .

Proof. For every point z ∈ νX , consider a small half-ball U centered in z as in Lemma

8.5. If f is the leaf of K through z, then αt(f ) lies on a leaf of the horocyclic foliation on

Xt
λ. We define �t(z) as the point of νX ⊂ Xt

λ lying on the leaf containing αt(f ). The map

�t maps U homeomorphically to a half-neighborhood of �t(z) in Xt
λ. �

We are ready to prove our main theorem:

Theorem 1.1. Let S be a surface with non-empty boundary and fix X ∈ Teich(S).

For every maximal lamination λ on X and for every t ≥ 0 there exists Xt
λ ∈ Teich(S)

and a Lipschitz map �t : X → Xt
λ, called generalized stretch map, with the following

properties:

1. X0
λ = X;

2. Lip (�t) = et;

3. �t(∂X) = ∂Xt
λ;

4. �t stretches the arc length of the leaves of λ by the factor et;

5. for every geometric piece G in X \ λ, the map �t restricts to a generalized

stretch map φt : G → Gt as described in Lemmas 5.5 and 5.8;

6. if λ contains a non-empty measurable sublamination, we have

Lip(�t) = min {Lip(ψ) | ψ ∈ Lip0(X, Xt
λ), ψ(∂X) ⊂ ∂Xt

λ},

where Lip0(X, Y) is the set of all Lipschitz maps homotopic to the identity.
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Proof. Properties (1)-(5) follow from the construction of �t. For Property (6), from

Property (2) we have

dA(X, Xt
λ) ≤ dL∂ (X, Xt

λ) ≤ t .

The arc length on λ is multiplied by et by Property (4), and since λ contains a measurable

sublamination we have, by Theorem 3.4, that dA(X, Xt
λ) ≥ t. This implies

dA(X, Xt
λ) = dL∂ (X, Xt

λ) = t . �

9 The Geometry of the Arc Distance

In this section we will prove the corollaries of Theorem 1.1 stated in the introduction.

9.1 Stretch lines are geodesics

We will now prove that, if a lamination λ contains a measurable sublamination, then a

generalized stretch line is a geodesic in Teich(S) for both the arc distance dA and the

Lipschitz distance dL∂ .

Corollary 1.2. For every X ∈ Teich(S) and every maximal lamination λ on X, if λ

contains a non-empty measurable sublamination then the generalized stretch line

sX,λ : R≥0 −→ Teich(S)

t �→ Xt
λ

is a geodesic path parametrized by arc length for both dA and dL∂ .

Proof. This follows from Theorem 1.1, once we notice that
(
Xt1

λ

)t2−t1

λ
= Xt2

λ . �

9.2 The Teichmüller space is geodesic

We will now prove that every pair of points X, Y ∈ Teich(S) is connected by a path

that is geodesic for both distances dA and dL∂ . The path will be a finite concatenation of

generalized stretch segments. Notice that, in a Riemannian manifold, a concatenation of

geodesic segments coming from distinct geodesic cannot be a geodesic. These distances

are indeed not induced by a Riemannian metric, we will see later that they are instead

induced by a Finsler metric. In a Finsler manifold, a geodesic segment might admit

several geodesic extensions.
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The 1st ingredient for the proof is the notion of ratio-maximizing measured

lamination. We will first recall Thurston’s definition for closed or punctured surfaces

and we then extend these notions to surfaces with boundary.

Definition 9.2 (Ratio-maximizing lamination for closed or punctured surfaces [20]).

Let S be a closed or punctured surface. Fix X, Y ∈ Teich(S). A geodesic lamination μ

is a ratio-maximizing for X, Y if there exists a homeomorphism f from a neighborhood

of μ in X to a neighborhood of μ in Y such that

1. f is R-Lipschitz, where R := exp(dA(X, Y));

2. f is homotopic to the identity;

3. f maps the support of μ in X to the support of μ in Y stretching the arc length

of μ affinely by a factor R.

Thurston [20] proves that for every pair of points X, Y ∈ Teich(S) there exists a

unique largest ratio-maximizing lamination μ(X, Y).

Definition 9.3 (Ratio-maximizing lamination for surfaces with boundary). Let S be

a surface with boundary and fix X, Y ∈ Teich(S). A geodesic lamination μ is a ratio-

maximizing lamination for X and Y if μd is ratio-maximizing for Xd, Yd. Moreover,

consider the unique largest ratio-maximizing lamination μ(Xd, Yd) in Sd. By unique-

ness, μ(Xd, Yd) is symmetric and restricts to a lamination on S that we denote by μ(X, Y)

and call the largest ratio-maximizing lamination for X, Y ∈ Teich(S).

Proposition 9.4. Let X, Y ∈ Teich(S) and let μ be a measured lamination. Then, the

support of μ is ratio-maximizing for X, Y if and only if μ realizes the maximum in the

formula for dA(X, Y) given in Theorem 3.4.

Proof. If S is closed or punctured, dA = dTh and the result was proven by Thurston

[20]. If S has boundary we can conclude by a doubling argument: the support of μd is

ratio-maximizing for Xd, Yd hence it realizes the maximum for dTh and by Proposition

2.10, μ realizes the maximum for dA. �

Lemma 9.5. Let λ be a maximal lamination, and X ∈ Teich(S). Then for all t ≥ 0,

μ(X, Xt
λ) = λ, .
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Proof. We need to construct a suitable homeomorphism φ from a neighborhood MX of

λ in X to a neighborhood MXt
λ

of λ in Xt
λ. We initially describe φ in every geometric piece.

For the triangular pieces, φ will agree with Thurston’s stretch map φt. For the other

pieces, φ agrees with our stretch maps φt on the support of the horocyclic foliation K
and on the edges that are leaves of λ. We can always extend it to a small neighborhood

of these edges by a homeomorphism. In the rest of X, φ is defined only on the support

of K, and there it agrees with our stretch map �t. We know that �t is a homeomorphism

on the support of K (proof of Proposition 8.6). Using Lemma 8.4, we see that the union of

the support of K with the triangular pieces and with a small neighborhood of the edges

of the geometric pieces part of λ is a neighborhood of λ. �

Lemma 9.6. The lamination μ(X, Y) contains a measurable sublamination.

Proof. This is because the maximum in the formula for dA(X, Y) given in Theorem 3.4

is always achieved by some measurable lamination, whose support is ratio-maximizing

by Proposition 9.4, hence contained in μ(X, Y). �

The following lemma is a simple adaptation of a result of Thurston.

Lemma 9.7. Let X, Y ∈ Teich(S). If Xi and Yi are sequences of hyperbolic structures

converging to X and Y, then μ(X, Y) contains every lamination in the limit set of μ(Xi, Yi)

in the Hausdorff topology.

Proof. If S has no boundary, see Thurston [20, Theorem 8.4]. If S has boundary, it

follows from Thurston’s result via a doubling argument. �

Given X, Y ∈ Teich(S), we will now construct a geodesic segment joining them.

Our proof goes along similar lines as the proof of Thurston’s [20, Theorem 8.5]. In our

case, we need to be more careful because our generalized stretch maps are not known to

be homeomorphisms everywhere, in contrast to Thurston’s stretch maps. Our maps are

known to be homeomorphisms only when restricted to the subset K from Section 8.2.2,

we already used this fact in Lemma 9.5.

The idea of the proof is the following: if μ(X, Y) is a maximal lamination, we can

simply consider the generalized stretch line starting at X with respect to μ(X, Y), and

prove that it passes through Y. If μ(X, Y) is not maximal, we will first complete it to a

maximal lamination λ ⊃ μ(X, Y), and consider the generalized stretch line starting at X
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with respect to λ. This will usually not pass through Y, hence we need to stop following

this geodesic at some point, and start following another one.

Lemma 9.8. Let λ be a maximal lamination containing μ(X, Y). There exists ε such

that for every 0 < t < ε we have

1. μ(Xt
λ, Y) = μ(X, Y);

2. dA(Xt
λ, Y) = dA(X, Y) − t.

Proof. Let μ denote μ(X, Y). By definition of μ, there exist neighborhoods NX , NY of

μ in X and Y respectively and a Lipschitz homeomorphism f : NX → NY with Lip(f ) =
edA(X,Y) mapping μ to itself and stretching its arc length affinely by edA(X,Y).

By Lemma 9.5, there exists two neighborhoods MX , MXt
λ

of μ in X, Xt
λ respectively

and a homeomorphism φ : MX → MXt
λ

with Lip(φ) = et and φ maps μ to itself by affinely

stretching it by et. The composition

f ′ = f ◦ φ−1 : MXt
λ

→ NY

has Lip(f ′) = edA(X,Y)−t and maps μ to itself affinely stretching by edA(X,Y)−t.

By Lemma 9.7 there exists ε such that if 0 < t < ε then μ(Xt
λ, Y) ⊂ NX . Since

Lip(f ′) = edA(X,Y)−t, we have

dA(Xt
λ, Y) ≤ dA(X, Y) − t .

On the other end, by the triangle inequality we have dA(Xt
λ, Y) ≥ dA(X, Y) − t. We thus

have

dA(Xt
λ, Y) = dA(X, Y) − t .

This implies that μ is ratio-maximizing for Xt
λ and Y. If we choose NX to be small enough,

all other laminations in this neighborhood must intersect μ. We saw that μ(Xt
λ, Y) ⊂ NX

and this implies

μ(Xt
λ, Y) = μ . �
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Fig. 24. Theorem 1.3.

Let t := tX,Y,λ be the supremum of the ε’s as in Lemma 9.8. If t = dA(X, Y),

Lemma 9.8 gives a geodesic segment joining X and Y. Otherwise, we will need the

following:

Lemma 9.9. If t < dA(X, Y) then μ(X, Y) � μ(Xt
λ, Y).

Proof. Let {tn} be a sequence of positive numbers such that tn ↗ t. By Lemma 9.8

μ(Xtn
λ , Y) = μ(X, Y) for every n. Now, Lemma 9.7 says that μ(Xtn

λ , Y) ⊆ μ(Xt
λ, Y).

By contradiction assume that μ(X, Y) = μ(Xt
λ, Y). Applying Lemma 9.8 on Xt

λ and

Y, we find values bigger than t satisfying the same properties. �

Theorem 1.3. The space (Teich(S), dA) is a geodesic metric space. Every two points

X, Y ∈ Teich(S) can be joined by a segment that is geodesic for both dA and dL∂ and is a

finite concatenation of generalized stretch segments.

Proof. We define inductively a sequence of hyperbolic structures X0, X1, . . . , Xk in the

following way. We set X0 = X. Now assume that Xi, i ≥ 0 has been defined. Choose

a maximal lamination λi that contains μ(Xi, Y). Consider the generalized stretch line

(Xi)
t
λi

, and compute ti := tXi,Y,λi
as defined after Lemma 9.8. If ti < dA(Xi, Y), we set

Xi+1 = (Xi)
ti
λi

, as in Fig. 24. If ti ≥ dA(Xi, Y), this implies that Y lies on the generalized

stretch line (Xi)
t
λi

, in this case we set k = i and we stop.

This defines the sequence of the Xi’s. Notice that μ(Xi, Y) � μ(Xi+1, Y), so we

have a strictly increasing chain of geodesic laminations. This implies k ≤ 2|χ(S)|. We

have found a finite sequence of concatenated geodesic segments

t → (Xi)
t
λi

, for 0 ≤ t ≤ ti
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such that X lies in the 1st one, and Y in the last one. By Lemma 9.8, we have dA(X, Xi) +
dA(Xi, Y) = dA(X, Y), hence this concatenation of segments is geodesic. �

Corollary 1.5. Given X, Y ∈ Teich(S), there exists a continuous map φ ∈ Lip0(X, Y),

with φ(∂X) ⊂ ∂Y and with optimal Lipschitz constant such that log(Lip(φ)) = dA(X, Y).

In particular, we have

dA(X, Y) = dL∂ (X, Y).

Proof. Consider the geodesic segment joining X and Y in the proof of Theorem 1.3:

it passes through the points X = X0, X1, . . . , Xk = Y, where Xi+1 = (Xi)
ti
λi

. Since Xi and

Xi+1 are on the same stretch line, by Theorem 1.1 we have a map �
ti
i : Xi → Xi+1 with

Lip(�
ti
i ) = eti and �

ti
i (∂Xi) ⊂ ∂Xi+1. Consider the composition:

φ = �
tk−1
k−1 ◦ · · · ◦ �

t0
0 : X → Y ,

which satisfies φ(∂X) ⊂ ∂Y. The Lipschitz constant of a composition is bounded by the

product of the constants:

Lip(φ) ≤
∏

i

eti = e
∑

i ti = edA(X,Y) .

We know that dA(X, Y) ≤ dL∂ (X, Y) ≤ log(Lip(φ)) ≤ dA(X, Y) . Hence, log(Lip(φ)) =
dA(X, Y) and dA(X, Y) = dL∂ (X, Y). �

9.3 Geodesics in the Teichmüller space of the double

A geodesic embedding between two metric spaces f : (�, d) → (�′, d′) is an isometric

embedding such that for every pair of points P, Q ∈ f (�) there exists a geodesic for

d′ that joins them and it is contained in f (�). The following is a consequence of

Theorem 1.3 and Proposition 2.10.

Corollary 1.6. The map (Teich(S), dA) ↪→ (Teich(Sd), dTh) is a geodesic embedding.

Corollary 1.7. Let X ∈ Teich(S) and let λ be a maximal lamination of X containing a

measurable sublamination with at least one leaf orthogonal to the boundary of X. Then,

the line t �→ (Xt
λ)

d ∈ Teich(Sd) is a geodesic for (Teich(Sd), dTh) that is not a stretch line

in the sense of Thurston [20].
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Proof. This line is a geodesic by Proposition 2.10. Notice that it stretches the length of

the lamination λd by a factor et. If it were a stretch line in the sense of Thurston, it would

be directed by a maximal lamination that contains λd. Since λ contains a leaf orthogonal

to ∂X, every extension of λd to a maximal lamination in Xd is not symmetric, and the

corresponding stretch line does not lie in the submanifold of symmetric hyperbolic

structures (see Théret [19]). �

In this way we find infinitely many examples of new geodesics for the Teich-

müller spaces of surfaces without boundary that are not stretch lines in the sense of

Thurston.

9.4 The Finsler metric

A Finsler metric on a smooth manifold M is a continuous function

F : TM 	 (x, v) → Fx(v) ∈ R≥0

which is a (possibly asymmetric) norm on the tangent space TxM at every point x ∈ M.

In a Finsler manifold the length of a smooth curve γ : [a, b] → M is given by the formula

�(γ ) :=
∫ b

a
Fγ (t)(γ̇ (t))dt,

and the (possibly asymmetric) distance induced by a Finsler metric is defined as

dF(x, y) = inf
γ

�(γ ),

where the infimum is taken over all the smooth curves joining x and y.

Corollary 1.4. The arc distance dA is induced by a Finsler metric on Teich(S).

Proof. Consider the map Teich(S) ↪→ Teich(Sd) as in Corollary 1.6. By [20], the

space (Teich(Sd), dTh) is a Finsler manifold. The space Teich(S) can be identified with

a submanifold of Teich(Sd), and naturally inherits the Finsler metric by restriction.

Now let’s prove that the distance induced is the same as the distance dA. Let X, Y be

two points in Teich(S), we proved that dA(X, Y) is the same as the length of a geodesic

segment joining them. By Corollary 1.6, the length of any geodesic segment in Teich(S)
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72 D. Alessandrini and V. Disarlo

is the same as in Teich(Sd). This in turn equals the length of the curve with respect to

the Finsler norm, because the Finsler norm induces the distance dTh on Teich(Sd). �
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